Suppr超能文献

基于二维共价封装的稳定高容量和高倍率硅基锂电池负极

Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation.

作者信息

Zhang Xinghao, Wang Denghui, Qiu Xiongying, Ma Yingjie, Kong Debin, Müllen Klaus, Li Xianglong, Zhi Linjie

机构信息

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Nat Commun. 2020 Jul 31;11(1):3826. doi: 10.1038/s41467-020-17686-4.

Abstract

Silicon is a promising anode material for lithium-ion and post lithium-ion batteries but suffers from a large volume change upon lithiation and delithiation. The resulting instabilities of bulk and interfacial structures severely hamper performance and obstruct practical use. Stability improvements have been achieved, although at the expense of rate capability. Herein, a protocol is developed which we describe as two-dimensional covalent encapsulation. Two-dimensional, covalently bound silicon-carbon hybrids serve as proof-of-concept of a new material design. Their high reversibility, capacity and rate capability furnish a remarkable level of integrated performances when referred to weight, volume and area. Different from existing strategies, the two-dimensional covalent binding creates a robust and efficient contact between the silicon and electrically conductive media, enabling stable and fast electron, as well as ion, transport from and to silicon. As evidenced by interfacial morphology and chemical composition, this design profoundly changes the interface between silicon and the electrolyte, securing the as-created contact to persist upon cycling. Combined with a simple, facile and scalable manufacturing process, this study opens a new avenue to stabilize silicon without sacrificing other device parameters. The results hold great promise for both further rational improvement and mass production of advanced energy storage materials.

摘要

硅是一种很有前景的用于锂离子电池和后锂离子电池的负极材料,但在锂化和脱锂过程中会发生较大的体积变化。由此导致的本体和界面结构的不稳定性严重阻碍了其性能,并妨碍了实际应用。尽管以倍率性能为代价,但已经实现了稳定性的提高。在此,我们开发了一种方法,我们将其描述为二维共价封装。二维共价键合的硅碳杂化物作为一种新材料设计的概念验证。当以重量、体积和面积来衡量时,它们的高可逆性、容量和倍率性能提供了卓越的综合性能水平。与现有策略不同,二维共价键合在硅和导电介质之间形成了牢固而有效的接触,使得电子和离子能够稳定且快速地在硅与外界之间传输。界面形态和化学成分证明,这种设计深刻地改变了硅与电解质之间的界面,确保了所形成的接触在循环过程中持续存在。结合简单、便捷且可扩展的制造工艺,本研究开辟了一条在不牺牲其他器件参数的情况下稳定硅的新途径。这些结果对于先进储能材料的进一步合理改进和大规模生产都具有巨大的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验