Suppr超能文献

关于猕猴大脑皮质连接:扩散轨迹和组织示踪数据的比较。

On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data.

机构信息

Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Center for BioMedical Imaging, Lausanne, Switzerland; Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.

出版信息

Neuroimage. 2020 Nov 1;221:117201. doi: 10.1016/j.neuroimage.2020.117201. Epub 2020 Jul 30.

Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) tractography is a non-invasive tool to probe neural connections and the structure of the white matter. It has been applied successfully in studies of neurological disorders and normal connectivity. Recent work has revealed that tractography produces a high incidence of false-positive connections, often from "bottleneck" white matter configurations. The rich literature in histological connectivity analysis studies in the macaque monkey enables quantitative evaluation of the performance of tractography algorithms. In this study, we use the intricate connections of frontal, cingulate, and parietal areas, well established by the anatomical literature, to derive a symmetrical histological connectivity matrix composed of 59 cortical areas. We evaluate the performance of fifteen diffusion tractography algorithms, including global, deterministic, and probabilistic state-of-the-art methods for the connectivity predictions of 1711 distinct pairs of areas, among which 680 are reported connected by the literature. The diffusion connectivity analysis was performed on a different ex-vivo macaque brain, acquired using multi-shell DW-MRI protocol, at high spatial and angular resolutions. Across all tested algorithms, the true-positive and true-negative connections were dominant over false-positive and false-negative connections, respectively. Moreover, three-quarters of streamlines had endpoints location in agreement with histological data, on average. Furthermore, probabilistic streamline tractography algorithms show the best performances in predicting which areas are connected. Altogether, we propose a method for quantitative evaluation of tractography algorithms, which aims at improving the sensitivity and the specificity of diffusion-based connectivity analysis. Overall, those results confirm the usefulness of tractography in predicting connectivity, although errors are produced. Many of the errors result from bottleneck white matter configurations near the cortical grey matter and should be the target of future implementation of methods.

摘要

弥散张量磁共振成像(DTI)纤维束示踪是一种探测神经连接和白质结构的非侵入性工具。它已成功应用于神经障碍和正常连接的研究中。最近的研究表明,纤维束示踪会产生大量的假阳性连接,这些连接通常来自“瓶颈”白质结构。在恒河猴的组织连接分析研究中有丰富的文献,这使得定量评估纤维束示踪算法的性能成为可能。在这项研究中,我们使用大脑额、扣带回和顶叶区域的复杂连接,这些连接在解剖学文献中已经得到很好的建立,来推导出一个由 59 个皮质区组成的对称组织连接矩阵。我们评估了 15 种弥散纤维束示踪算法的性能,包括全局、确定性和概率最先进的方法,对 1711 对不同区域的连接进行预测,其中 680 对是文献中报道的连接。扩散连接分析是在另一个使用多壳层 DWI 协议获得的离体恒河猴大脑上进行的,具有高空间和角分辨率。在所有测试的算法中,真阳性和真阴性连接分别占主导地位,而假阳性和假阴性连接则较少。此外,平均而言,三分之二的轨迹线的终点位置与组织学数据一致。此外,概率轨迹线示踪算法在预测哪些区域相连方面表现出最佳性能。总之,我们提出了一种定量评估纤维束示踪算法的方法,旨在提高基于扩散的连接分析的灵敏度和特异性。总的来说,这些结果证实了纤维束示踪在预测连接方面的有用性,尽管存在错误。许多错误是由于靠近皮质灰质的瓶颈白质结构造成的,应该成为未来方法实施的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验