文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

弥散磁共振成像和同一大脑中的解剖示踪在显示追踪的常见失败模式方面是相同的。

Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography.

机构信息

DeepHealth, Inc., Belmont, MA, United States.

Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States; McLean Hospital, Belmont, MA, United States.

出版信息

Neuroimage. 2021 Oct 1;239:118300. doi: 10.1016/j.neuroimage.2021.118300. Epub 2021 Jun 22.


DOI:10.1016/j.neuroimage.2021.118300
PMID:34171498
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8475636/
Abstract

Anatomic tracing is recognized as a critical source of knowledge on brain circuitry that can be used to assess the accuracy of diffusion MRI (dMRI) tractography. However, most prior studies that have performed such assessments have used dMRI and tracer data from different brains and/or have been limited in the scope of dMRI analysis methods allowed by the data. In this work, we perform a quantitative, voxel-wise comparison of dMRI tractography and anatomic tracing data in the same macaque brain. An ex vivo dMRI acquisition with high angular resolution and high maximum b-value allows us to compare a range of q-space sampling, orientation reconstruction, and tractography strategies. The availability of tracing in the same brain allows us to localize the sources of tractography errors and to identify axonal configurations that lead to such errors consistently, across dMRI acquisition and analysis strategies. We find that these common failure modes involve geometries such as branching or turning, which cannot be modeled well by crossing fibers. We also find that the default thresholds that are commonly used in tractography correspond to rather conservative, low-sensitivity operating points. While deterministic tractography tends to have higher sensitivity than probabilistic tractography in that very conservative threshold regime, the latter outperforms the former as the threshold is relaxed to avoid missing true anatomical connections. On the other hand, the q-space sampling scheme and maximum b-value have less of an impact on accuracy. Finally, using scans from a set of additional macaque brains, we show that there is enough inter-individual variability to warrant caution when dMRI and tracer data come from different animals, as is often the case in the tractography validation literature. Taken together, our results provide insights on the limitations of current tractography methods and on the critical role that anatomic tracing can play in identifying potential avenues for improvement.

摘要

解剖示踪被认为是大脑回路知识的重要来源,可以用于评估扩散磁共振成像(dMRI)轨迹的准确性。然而,大多数进行此类评估的先前研究都使用了来自不同大脑的 dMRI 和示踪剂数据,或者受到数据允许的 dMRI 分析方法范围的限制。在这项工作中,我们在同一猕猴大脑中对 dMRI 轨迹和解剖示踪数据进行了定量的体素比较。具有高角分辨率和高最大 b 值的离体 dMRI 采集使我们能够比较一系列 q 空间采样、方向重建和轨迹重建策略。在同一大脑中提供示踪,使我们能够定位轨迹重建误差的来源,并确定导致这些错误的轴突配置,这些错误在 dMRI 采集和分析策略中是一致的。我们发现这些常见的失效模式涉及分支或转弯等几何形状,而这些形状不能很好地通过交叉纤维来建模。我们还发现,在轨迹重建中常用的默认阈值对应于相当保守的低灵敏度工作点。虽然确定性轨迹重建在非常保守的阈值范围内比概率性轨迹重建具有更高的灵敏度,但在后一种情况下,随着阈值的放宽以避免错过真实的解剖连接,其性能优于前者。另一方面,q 空间采样方案和最大 b 值对准确性的影响较小。最后,使用来自一组额外的猕猴大脑的扫描,我们表明,个体间的变异性足以引起警惕,当 dMRI 和示踪剂数据来自不同的动物时,就像在轨迹重建验证文献中经常出现的情况一样。总之,我们的研究结果提供了对当前轨迹重建方法的局限性的深入了解,并强调了解剖示踪在确定潜在改进途径方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/66b144328c46/nihms-1732192-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/56f1cf09583c/nihms-1732192-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/c94aef1cc0a4/nihms-1732192-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/2f9a6f93dce5/nihms-1732192-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/50a07c52fbb1/nihms-1732192-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/b20e6594c369/nihms-1732192-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/78e3bfe9dae5/nihms-1732192-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/5c829a2a20a7/nihms-1732192-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/81480e960371/nihms-1732192-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/f29eb6717b75/nihms-1732192-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/8631a90a5740/nihms-1732192-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/965f3604d99a/nihms-1732192-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/66b144328c46/nihms-1732192-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/56f1cf09583c/nihms-1732192-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/c94aef1cc0a4/nihms-1732192-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/2f9a6f93dce5/nihms-1732192-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/50a07c52fbb1/nihms-1732192-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/b20e6594c369/nihms-1732192-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/78e3bfe9dae5/nihms-1732192-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/5c829a2a20a7/nihms-1732192-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/81480e960371/nihms-1732192-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/f29eb6717b75/nihms-1732192-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/8631a90a5740/nihms-1732192-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/965f3604d99a/nihms-1732192-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/8475636/66b144328c46/nihms-1732192-f0012.jpg

相似文献

[1]
Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography.

Neuroimage. 2021-10-1

[2]
Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI.

Neuroimage. 2022-8-15

[3]
Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b-values and single- and multi-fiber tracking strategies.

Neuroimage Clin. 2020

[4]
Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

Proc Natl Acad Sci U S A. 2014-11-18

[5]
On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data.

Neuroimage. 2020-11-1

[6]
Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography.

Proc Natl Acad Sci U S A. 2015-5-26

[7]
Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI.

Hum Brain Mapp. 2024-10

[8]
Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

Neuroimage. 2015-4-1

[9]
Using mesoscopic tract-tracing data to guide the estimation of fiber orientation distributions in the mouse brain from diffusion MRI.

Neuroimage. 2023-4-15

[10]
High-resolution 3D diffusion tensor MRI of anesthetized rhesus macaque brain at 3T.

Neuroimage. 2018-6-27

引用本文的文献

[1]
Interplay between MRI-based axon diameter and myelination estimates in macaque and human brain.

Imaging Neurosci (Camb). 2025-5-12

[2]
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data.

Imaging Neurosci (Camb). 2025-3-24

[3]
Structure-function coupling in the first month of life: Associations with age and attention.

Proc Natl Acad Sci U S A. 2025-6-10

[4]
Cross-species neuroanatomy in primates using tractography.

Brain Struct Funct. 2025-5-28

[5]
Involvement of the Cerebellar Peduncles in Premutation Carriers: A Pictorial Review of Their Anatomy, Imaging, and Pathology.

Int J Mol Sci. 2025-5-6

[6]
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 2-Ex vivo imaging: Added value and acquisition.

Magn Reson Med. 2025-6

[7]
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 1: In vivo small-animal imaging.

Magn Reson Med. 2025-6

[8]
Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography.

Magn Reson Med. 2025-6

[9]
The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy.

Brain. 2025-5-13

[10]
Ultrahigh-resolution 7-Tesla anatomic magnetic resonance imaging and diffusion tensor imaging of formalin-fixed human brainstem-cerebellum complex.

Front Hum Neurosci. 2024-11-27

本文引用的文献

[1]
Post mortem mapping of connectional anatomy for the validation of diffusion MRI.

Neuroimage. 2022-8-1

[2]
Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain.

Neuroimage. 2021-3

[3]
The impact of realistic axonal shape on axon diameter estimation using diffusion MRI.

Neuroimage. 2020-12

[4]
On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data.

Neuroimage. 2020-11-1

[5]
Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain.

Neuroimage. 2020-7-1

[6]
Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain.

Netw Neurosci. 2019-9-1

[7]
Validation of structural brain connectivity networks: The impact of scanning parameters.

Neuroimage. 2019-9-17

[8]
A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control.

Elife. 2019-6-19

[9]
Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging.

Front Neurosci. 2018-9-24

[10]
Limits to anatomical accuracy of diffusion tractography using modern approaches.

Neuroimage. 2018-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索