Suppr超能文献

一种用于阿尔茨海默病发病年龄的数量性状罕见变异非参数连锁方法。

A quantitative trait rare variant nonparametric linkage method with application to age-at-onset of Alzheimer's disease.

机构信息

Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.

Center for Statistical Genetics, Columbia University, New York, NY, 10027, USA.

出版信息

Eur J Hum Genet. 2020 Dec;28(12):1734-1742. doi: 10.1038/s41431-020-0703-z. Epub 2020 Aug 1.

Abstract

To analyze pedigrees with quantitative trait (QT) and sequence data, we developed a rare variant (RV) quantitative nonparametric linkage (QNPL) method, which evaluates sharing of minor alleles. RV-QNPL has greater power than the traditional QNPL that tests for excess sharing of minor and major alleles. RV-QNPL is robust to population substructure and admixture, locus heterogeneity, and inclusion of nonpathogenic variants and can be readily applied outside of coding regions. When QNPL was used to analyze common variants, it often led to loci mapping to large intervals, e.g., >40 Mb. In contrast, when RVs are analyzed, regions are well defined, e.g., a gene. Using simulation studies, we demonstrate that RV-QNPL is substantially more powerful than applying traditional QNPL methods to analyze RVs. RV-QNPL was also applied to analyze age-at-onset (AAO) data for 107 late-onset Alzheimer's disease (LOAD) pedigrees of Caribbean Hispanic and European ancestry with whole-genome sequence data. When AAO of AD was analyzed regardless of APOE ε4 status, suggestive linkage (LOD = 2.4) was observed with RVs in KNDC1 and nominally significant linkage (p < 0.05) was observed with RVs in LOAD genes ABCA7 and IQCK. When AAO of AD was analyzed for APOE ε4 positive family members, nominally significant linkage was observed with RVs in APOE, while when AAO of AD was analyzed for APOE ε4 negative family members, nominal significance was observed for IQCK and ADAMTS1. RV-QNPL provides a powerful resource to analyze QTs in families to elucidate their genetic etiology.

摘要

为了分析具有定量性状(QT)和序列数据的家系,我们开发了一种罕见变异(RV)定量非参数连锁(QNPL)方法,该方法评估了少数等位基因的共享情况。与传统的 QNPL 相比,RV-QNPL 具有更高的检测少数和多数等位基因过度共享的能力。RV-QNPL 对群体亚结构和混合、基因座异质性以及包括非致病性变异具有稳健性,并且可以很容易地应用于编码区域之外。当 QNPL 用于分析常见变异时,它通常导致定位到较大的区间,例如 >40 Mb。相比之下,当分析 RV 时,区域定义明确,例如一个基因。通过模拟研究,我们证明 RV-QNPL 比应用传统的 QNPL 方法分析 RV 具有更高的统计功效。还将 RV-QNPL 应用于分析 107 个具有全基因组序列数据的加勒比西班牙裔和欧洲血统的迟发性阿尔茨海默病(LOAD)家系的发病年龄(AAO)数据。当无论 APOE ε4 状态如何分析 AD 的 AAO 时,在 KNDC1 中观察到提示连锁(LOD = 2.4),在 LOAD 基因 ABCA7 和 IQCK 中观察到名义上显著连锁(p < 0.05)。当分析 APOE ε4 阳性家族成员的 AD 的 AAO 时,在 APOE 中观察到名义上的连锁,而当分析 APOE ε4 阴性家族成员的 AD 的 AAO 时,IQCK 和 ADAMTS1 观察到名义上的显著性。RV-QNPL 为分析家系中的 QT 提供了一种强大的资源,以阐明其遗传病因。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验