Suppr超能文献

用于核家系及扩展家系关联分析的罕见变异广义不平衡检验及其在阿尔茨海默病全基因组测序数据中的应用

The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data.

作者信息

He Zongxiao, Zhang Di, Renton Alan E, Li Biao, Zhao Linhai, Wang Gao T, Goate Alison M, Mayeux Richard, Leal Suzanne M

机构信息

Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

Department of Neuroscience and Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.

出版信息

Am J Hum Genet. 2017 Feb 2;100(2):193-204. doi: 10.1016/j.ajhg.2016.12.001. Epub 2017 Jan 5.

Abstract

Whole-genome and exome sequence data can be cost-effectively generated for the detection of rare-variant (RV) associations in families. Causal variants that aggregate in families usually have larger effect sizes than those found in sporadic cases, so family-based designs can be a more powerful approach than population-based designs. Moreover, some family-based designs are robust to confounding due to population admixture or substructure. We developed a RV extension of the generalized disequilibrium test (GDT) to analyze sequence data obtained from nuclear and extended families. The GDT utilizes genotype differences of all discordant relative pairs to assess associations within a family, and the RV extension combines the single-variant GDT statistic over a genomic region of interest. The RV-GDT has increased power by efficiently incorporating information beyond first-degree relatives and allows for the inclusion of covariates. Using simulated genetic data, we demonstrated that the RV-GDT method has well-controlled type I error rates, even when applied to admixed populations and populations with substructure. It is more powerful than existing family-based RV association methods, particularly for the analysis of extended pedigrees and pedigrees with missing data. We analyzed whole-genome sequence data from families affected by Alzheimer disease to illustrate the application of the RV-GDT. Given the capability of the RV-GDT to adequately control for population admixture or substructure and analyze pedigrees with missing genotype data and its superior power over other family-based methods, it is an effective tool for elucidating the involvement of RVs in the etiology of complex traits.

摘要

全基因组和外显子组序列数据能够以具有成本效益的方式生成,用于检测家族中的罕见变异(RV)关联。在家族中聚集的因果变异通常比散发病例中的变异具有更大的效应大小,因此基于家族的设计可能是比基于人群的设计更强大的方法。此外,一些基于家族的设计对于由于人群混合或亚结构导致的混杂具有稳健性。我们开发了广义不平衡检验(GDT)的RV扩展,以分析从核心家庭和扩展家庭获得的序列数据。GDT利用所有不一致亲属对的基因型差异来评估家族内的关联,而RV扩展则将单个变异的GDT统计量整合到感兴趣的基因组区域上。RV-GDT通过有效纳入一级亲属以外的信息提高了检验效能,并允许纳入协变量。使用模拟遗传数据,我们证明即使应用于混合人群和具有亚结构的人群,RV-GDT方法也具有良好控制的I型错误率。它比现有的基于家族的RV关联方法更强大,特别是对于扩展家系和有缺失数据的家系分析。我们分析了受阿尔茨海默病影响的家族的全基因组序列数据,以说明RV-GDT的应用。鉴于RV-GDT能够充分控制人群混合或亚结构,并分析具有缺失基因型数据的家系,且其检验效能优于其他基于家族的方法,它是阐明RVs在复杂性状病因学中作用的有效工具。

相似文献

引用本文的文献

本文引用的文献

4
Alzheimer's disease: rare variants with large effect sizes.阿尔茨海默病:具有大效应量的罕见变异体。
Curr Opin Genet Dev. 2015 Aug;33:49-55. doi: 10.1016/j.gde.2015.07.008. Epub 2015 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验