Kim Jeonghwan, Mukherjee Anindit, Nelson Dylan, Jozic Antony, Sahay Gaurav
bioRxiv. 2020 Jul 25:2020.07.24.205583. doi: 10.1101/2020.07.24.205583.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters through the airways and infects the lungs, causing lethal pulmonary damage in vulnerable patients. This virus contains spike proteins on its envelope that binds to human angiotensin-converting enzyme 2 (hACE2) expressed on the surface of airway cells, enabling entry of the virus for causing infection . In severe cases, the virus enters the circulatory system, contributing to multiorgan failure. Soluble form of hACE2 binds to SARS-CoV-2 spike protein and prevents viral entry into target cells . Moreover, soluble recombinant ACE2 ameliorates lung injury but its short half-life limits its therapeutic utility . Here, we engineered synthetic mRNA to encode a soluble form of hACE2 (hsACE2) to prevent viral infection. Novel lipid nanoparticles (LNPs) were used to package mRNA and transfect mammalian cells for enhanced production of secreted proteins. Intravenously administered LNP led to hepatic delivery of the mRNA. This elicited secretion of hsACE2 into the blood circulation within 2 h, and levels of circulating hsACE2 peaked at 6 h and gradually decreased over several days. Since the primary site of entry and pathogenesis for SARS-CoV-2 is the lungs, we instilled LNPs into the lungs and were able to detect hsACE2 in the bronchoalveolar lavage fluid within 24 h and lasted for 48 h. Through co-immunoprecipitation, we found that mRNA-generated hsACE2 was able to bind with the receptor binding domain of the SARS-CoV-2 spike protein. Furthermore, hsACE2 was able to strongly inhibit (over 90%) SARS-CoV-2 pseudovirus infection. Our proof of principle study shows that mRNA-based nanotherapeutics can be potentially deployed for pulmonary and extrapulmonary neutralization of SARS-CoV-2 and open new treatment opportunities for COVID-19.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)通过气道进入并感染肺部,在易感患者中造成致命的肺部损伤。这种病毒在其包膜上含有刺突蛋白,该蛋白与气道细胞表面表达的人类血管紧张素转换酶2(hACE2)结合,使病毒能够进入并引发感染。在严重情况下,病毒进入循环系统,导致多器官功能衰竭。可溶性形式的hACE2与SARS-CoV-2刺突蛋白结合,阻止病毒进入靶细胞。此外,可溶性重组ACE2可改善肺损伤,但其半衰期短限制了其治疗效用。在此,我们设计合成mRNA来编码可溶性形式的hACE2(hsACE2)以预防病毒感染。新型脂质纳米颗粒(LNP)用于包装mRNA并转染哺乳动物细胞,以增强分泌蛋白的产生。静脉注射LNP可使mRNA递送至肝脏。这导致hsACE2在2小时内分泌到血液循环中,循环中的hsACE2水平在6小时达到峰值,并在数天内逐渐下降。由于SARS-CoV-2的主要进入和发病部位是肺部,我们将LNP注入肺部,并能够在24小时内在支气管肺泡灌洗液中检测到hsACE2,且持续了48小时。通过免疫共沉淀,我们发现mRNA产生的hsACE2能够与SARS-CoV-2刺突蛋白的受体结合域结合。此外,hsACE2能够强烈抑制(超过90%)SARS-CoV-2假病毒感染。我们的原理验证研究表明,基于mRNA的纳米疗法有可能用于SARS-CoV-2的肺部和肺外中和,并为COVID-19开辟新的治疗机会。