Pelosin Primavera, Gil-Sepulcre Marcos, Garrido-Barros Pablo, Moonshiram Dooshaye, Benet-Buchholz Jordi, Gimbert-Suriñach Carolina, Llobet Antoni
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona 43007, Spain.
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Calle Faraday 9, Madrid 28049, Spain.
iScience. 2020 Aug 21;23(8):101378. doi: 10.1016/j.isci.2020.101378. Epub 2020 Jul 18.
Water splitting with sunlight is today one of the most promising strategies that can be used to start the imperatively needed transition from fossil to solar fuels. To achieve this, one of the key reactions that need to be mastered is the electrocatalytic oxidation of water to dioxygen. Great developments have been achieved using transition metal complexes mainly based on Ru, but for technological applications it is highly desirable to be able to use earth-abundant transition metals. The intrinsic chemistry of first row transition metals and in particular the lability of their M-L bonds in water imposes serious challenges for the latter to work as real molecular catalysts. The present work addresses this issue based on a molecular pentanuclear Fe complex and describes the different protocols and tests that need to be carried out in order to identify the real active species, responsible for the generation of dioxygen.
利用阳光进行水分解是当今最具前景的策略之一,可用于启动从化石燃料到太阳能燃料这一迫切需要的转变。要实现这一目标,需要掌握的关键反应之一是水的电催化氧化生成氧气。使用主要基于钌的过渡金属配合物已取得了重大进展,但对于技术应用而言,能够使用储量丰富的过渡金属是非常理想的。第一排过渡金属的内在化学性质,尤其是它们在水中的M-L键的不稳定性,给后者作为真正的分子催化剂带来了严峻挑战。本工作基于一种分子五核铁配合物解决了这个问题,并描述了为识别负责生成氧气的真正活性物种而需要进行的不同实验方案和测试。