Suppr超能文献

高效的医学仪器在三维容积超声数据中的检测。

Efficient Medical Instrument Detection in 3D Volumetric Ultrasound Data.

出版信息

IEEE Trans Biomed Eng. 2021 Mar;68(3):1034-1043. doi: 10.1109/TBME.2020.2999729. Epub 2021 Feb 18.

Abstract

Ultrasound-guided procedures have been applied in many clinical therapies, such as cardiac catheterization and regional anesthesia. Medical instrument detection in 3D Ultrasound (US) is highly desired, but the existing approaches are far from real-time performance. Our objective is to investigate an efficient instrument detection method in 3D US for practical clinical use. We propose a novel Multi-dimensional Mixed Network for efficient instrument detection in 3D US, which extracts the discriminating features at 3D full-image level by a 3D encoder, and then applies a specially designed dimension reduction block to reduce the spatial complexity of the feature maps by projecting from 3D space into 2D space. A 2D decoder is adopted to detect the instrument along the specified axes. By projecting the predicted 2D outputs, the instrument is detected or visualized in the 3D volume. Furthermore, to enable the network to better learn the discriminative information, we propose a multi-level loss function to capture both pixel- and image-level differences. We carried out extensive experiments on two datasets for two tasks: (1) catheter detection for cardiac RF-ablation and (2) needle detection for regional anesthesia. Our experiments show that our proposed method achieves a detection error of 2-3 voxels with an efficiency of about 0.12 sec per 3D US volume. The proposed method is 3-8 times faster than the state-of-the-art methods, leading to real-time performance. The results show that our proposed method has significant clinical value for real-time 3D US-guided intervention.

摘要

超声引导技术已广泛应用于多种临床治疗中,如心脏导管消融术和区域麻醉。在三维超声(3D US)中进行医学仪器检测备受期待,但现有方法远未达到实时性能。我们的目标是研究一种高效的 3D US 中医疗仪器检测方法,以满足实际临床应用的需求。我们提出了一种新颖的多维混合网络,用于高效的 3D US 中医疗仪器检测。该网络通过 3D 编码器从 3D 全图像级别提取判别特征,然后应用专门设计的降维块将特征图的空间复杂度从 3D 空间投影到 2D 空间,以降低空间复杂度。采用 2D 解码器沿指定轴检测仪器。通过预测 2D 输出的投影,在 3D 体积中检测或可视化仪器。此外,为了使网络更好地学习判别信息,我们提出了一种多级损失函数,以捕捉像素级和图像级别的差异。我们在两个数据集上进行了两项任务的广泛实验:(1)心脏射频消融的导管检测,(2)区域麻醉的针检测。实验结果表明,我们的方法在导管检测任务中的检测误差为 2-3 个体素,效率约为每秒 0.12 个 3D US 体积。与最先进的方法相比,我们的方法快 3-8 倍,实现了实时性能。实验结果表明,我们的方法对于实时 3D US 引导介入具有重要的临床价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验