Suppr超能文献

基于超声引导高剂量率前列腺近距离治疗的多针定位与注意力 U-Net。

Multi-needle Localization with Attention U-Net in US-guided HDR Prostate Brachytherapy.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA.

Department of Radiation Oncology, New York University, New York, NY, USA.

出版信息

Med Phys. 2020 Jul;47(7):2735-2745. doi: 10.1002/mp.14128. Epub 2020 Apr 3.

Abstract

PURPOSE

Ultrasound (US)-guided high dose rate (HDR) prostate brachytherapy requests the clinicians to place HDR needles (catheters) into the prostate gland under transrectal US (TRUS) guidance in the operating room. The quality of the subsequent radiation treatment plan is largely dictated by the needle placements, which varies upon the experience level of the clinicians and the procedure protocols. Real-time plan dose distribution, if available, could be a vital tool to provide more subjective assessment of the needle placements, hence potentially improving the radiation plan quality and the treatment outcome. However, due to low signal-to-noise ratio (SNR) in US imaging, real-time multi-needle segmentation in 3D TRUS, which is the major obstacle for real-time dose mapping, has not been realized to date. In this study, we propose a deep learning-based method that enables accurate and real-time digitization of the multiple needles in the 3D TRUS images of HDR prostate brachytherapy.

METHODS

A deep learning model based on the U-Net architecture was developed to segment multiple needles in the 3D TRUS images. Attention gates were considered in our model to improve the prediction on the small needle points. Furthermore, the spatial continuity of needles was encoded into our model with total variation (TV) regularization. The combined network was trained on 3D TRUS patches with the deep supervision strategy, where the binary needle annotation images were provided as ground truth. The trained network was then used to localize and segment the HDR needles for a new patient's TRUS images. We evaluated our proposed method based on the needle shaft and tip errors against manually defined ground truth and compared our method with other state-of-art methods (U-Net and deeply supervised attention U-Net).

RESULTS

Our method detected 96% needles of 339 needles from 23 HDR prostate brachytherapy patients with 0.290 ± 0.236 mm at shaft error and 0.442 ± 0.831 mm at tip error. For shaft localization, our method resulted in 96% localizations with less than 0.8 mm error (needle diameter is 1.67 mm), while for tip localization, our method resulted in 75% needles with 0 mm error and 21% needles with 2 mm error (TRUS image slice thickness is 2 mm). No significant difference is observed (P = 0.83) on tip localization between our results with the ground truth. Compared with U-Net and deeply supervised attention U-Net, the proposed method delivers a significant improvement on both shaft error and tip error (P < 0.05).

CONCLUSIONS

We proposed a new segmentation method to precisely localize the tips and shafts of multiple needles in 3D TRUS images of HDR prostate brachytherapy. The 3D rendering of the needles could help clinicians to evaluate the needle placements. It paves the way for the development of real-time plan dose assessment tools that can further elevate the quality and outcome of HDR prostate brachytherapy.

摘要

目的

超声(US)引导高剂量率(HDR)前列腺近距离放射治疗需要临床医生在手术室中经直肠超声(TRUS)引导下将 HDR 针(导管)放置到前列腺中。后续放射治疗计划的质量在很大程度上取决于针的位置,这取决于临床医生的经验水平和程序协议。如果有实时计划剂量分布,它可能是评估针放置的重要工具,从而有可能提高放射治疗计划的质量和治疗结果。然而,由于 US 成像中的信噪比(SNR)低,因此尚未实现实时多针 3D TRUS 中的实时分割,这是实时剂量映射的主要障碍。在这项研究中,我们提出了一种基于深度学习的方法,可实现 HDR 前列腺近距离放射治疗中 3D TRUS 图像中多个针的准确和实时数字化。

方法

我们开发了一种基于 U-Net 架构的深度学习模型,用于分割 3D TRUS 图像中的多个针。我们的模型中考虑了注意力门,以提高对小针点的预测能力。此外,我们的模型还使用总变差(TV)正则化将针的空间连续性编码到模型中。该联合网络使用具有深度监督策略的 3D TRUS 补丁进行训练,其中提供了二进制针注释图像作为地面实况。然后,使用训练好的网络对新患者的 TRUS 图像中的 HDR 针进行定位和分割。我们根据与手动定义的地面实况相比的针轴和针尖误差来评估我们提出的方法,并将我们的方法与其他最先进的方法(U-Net 和深度监督注意 U-Net)进行比较。

结果

我们的方法检测到了 23 名 HDR 前列腺近距离放射治疗患者的 339 根针中的 96%的针,其轴误差为 0.290±0.236mm,针尖误差为 0.442±0.831mm。对于轴定位,我们的方法导致 96%的定位误差小于 0.8mm(针直径为 1.67mm),而对于针尖定位,我们的方法导致 75%的针的误差为 0mm,21%的针的误差为 2mm(TRUS 图像切片厚度为 2mm)。我们的结果与地面实况之间在针尖定位上没有观察到显著差异(P=0.83)。与 U-Net 和深度监督注意 U-Net 相比,所提出的方法在轴误差和针尖误差方面都有显著提高(P<0.05)。

结论

我们提出了一种新的分割方法,可精确定位 HDR 前列腺近距离放射治疗中 3D TRUS 图像中的多个针的尖端和轴。针的 3D 渲染可以帮助临床医生评估针的位置。它为开发实时计划剂量评估工具铺平了道路,该工具可以进一步提高 HDR 前列腺近距离放射治疗的质量和结果。

相似文献

1
Multi-needle Localization with Attention U-Net in US-guided HDR Prostate Brachytherapy.
Med Phys. 2020 Jul;47(7):2735-2745. doi: 10.1002/mp.14128. Epub 2020 Apr 3.
5
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.
6
Deep learning applications in automatic needle segmentation in ultrasound-guided prostate brachytherapy.
Med Phys. 2020 Sep;47(9):3797-3805. doi: 10.1002/mp.14328. Epub 2020 Jul 16.
10
Deep learning-based digitization of prostate brachytherapy needles in ultrasound images.
Med Phys. 2020 Dec;47(12):6414-6420. doi: 10.1002/mp.14508. Epub 2020 Oct 27.

引用本文的文献

1
A review of artificial intelligence in brachytherapy.
J Appl Clin Med Phys. 2025 Jun;26(6):e70034. doi: 10.1002/acm2.70034. Epub 2025 Feb 27.
2
Needle tracking and segmentation in breast ultrasound imaging based on spatio-temporal memory network.
Front Oncol. 2025 Jan 17;14:1519536. doi: 10.3389/fonc.2024.1519536. eCollection 2024.
3
Instant plan quality prediction on transrectal ultrasound for high-dose-rate prostate brachytherapy.
Brachytherapy. 2025 Jan-Feb;24(1):171-176. doi: 10.1016/j.brachy.2024.10.009. Epub 2024 Nov 20.
4
A Review of Artificial Intelligence in Brachytherapy.
ArXiv. 2024 Sep 25:arXiv:2409.16543v1.
5
Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients' needs.
Clin Transl Radiat Oncol. 2024 Sep 22;49:100865. doi: 10.1016/j.ctro.2024.100865. eCollection 2024 Nov.
6
Attention-Gated Deep-Learning-Based Automatic Digitization of Interstitial Needles in High-Dose-Rate Brachytherapy for Cervical Cancer.
Adv Radiat Oncol. 2023 Aug 10;9(1):101340. doi: 10.1016/j.adro.2023.101340. eCollection 2024 Jan.
7
Landmark tracking in liver US images using cascade convolutional neural networks with long short-term memory.
Meas Sci Technol. 2023 May 1;34(5):054002. doi: 10.1088/1361-6501/acb5b3. Epub 2023 Feb 2.
8
The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data.
Z Med Phys. 2024 May;34(2):180-196. doi: 10.1016/j.zemedi.2022.10.005. Epub 2022 Nov 12.
9
Modality specific U-Net variants for biomedical image segmentation: a survey.
Artif Intell Rev. 2022;55(7):5845-5889. doi: 10.1007/s10462-022-10152-1. Epub 2022 Mar 1.
10
Artificial intelligence in tumor subregion analysis based on medical imaging: A review.
J Appl Clin Med Phys. 2021 Jul;22(7):10-26. doi: 10.1002/acm2.13321. Epub 2021 Jun 24.

本文引用的文献

1
Multi-Needle Detection in 3D Ultrasound Images Using Unsupervised Order-Graph Regularized Sparse Dictionary Learning.
IEEE Trans Med Imaging. 2020 Jul;39(7):2302-2315. doi: 10.1109/TMI.2020.2968770. Epub 2020 Jan 22.
2
Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net.
Med Phys. 2019 Jul;46(7):3194-3206. doi: 10.1002/mp.13577. Epub 2019 May 29.
4
Multiparametric MRI-guided dose boost to dominant intraprostatic lesions in CT-based High-dose-rate prostate brachytherapy.
Br J Radiol. 2019 May;92(1097):20190089. doi: 10.1259/bjr.20190089. Epub 2019 Apr 9.
5
Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis.
Trends Cancer. 2019 Mar;5(3):157-169. doi: 10.1016/j.trecan.2019.02.002. Epub 2019 Feb 28.
8
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
9
A guide to deep learning in healthcare.
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
10
U-Net: deep learning for cell counting, detection, and morphometry.
Nat Methods. 2019 Jan;16(1):67-70. doi: 10.1038/s41592-018-0261-2. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验