Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA.
Department of Radiation Oncology, New York University, New York, NY, USA.
Med Phys. 2020 Jul;47(7):2735-2745. doi: 10.1002/mp.14128. Epub 2020 Apr 3.
Ultrasound (US)-guided high dose rate (HDR) prostate brachytherapy requests the clinicians to place HDR needles (catheters) into the prostate gland under transrectal US (TRUS) guidance in the operating room. The quality of the subsequent radiation treatment plan is largely dictated by the needle placements, which varies upon the experience level of the clinicians and the procedure protocols. Real-time plan dose distribution, if available, could be a vital tool to provide more subjective assessment of the needle placements, hence potentially improving the radiation plan quality and the treatment outcome. However, due to low signal-to-noise ratio (SNR) in US imaging, real-time multi-needle segmentation in 3D TRUS, which is the major obstacle for real-time dose mapping, has not been realized to date. In this study, we propose a deep learning-based method that enables accurate and real-time digitization of the multiple needles in the 3D TRUS images of HDR prostate brachytherapy.
A deep learning model based on the U-Net architecture was developed to segment multiple needles in the 3D TRUS images. Attention gates were considered in our model to improve the prediction on the small needle points. Furthermore, the spatial continuity of needles was encoded into our model with total variation (TV) regularization. The combined network was trained on 3D TRUS patches with the deep supervision strategy, where the binary needle annotation images were provided as ground truth. The trained network was then used to localize and segment the HDR needles for a new patient's TRUS images. We evaluated our proposed method based on the needle shaft and tip errors against manually defined ground truth and compared our method with other state-of-art methods (U-Net and deeply supervised attention U-Net).
Our method detected 96% needles of 339 needles from 23 HDR prostate brachytherapy patients with 0.290 ± 0.236 mm at shaft error and 0.442 ± 0.831 mm at tip error. For shaft localization, our method resulted in 96% localizations with less than 0.8 mm error (needle diameter is 1.67 mm), while for tip localization, our method resulted in 75% needles with 0 mm error and 21% needles with 2 mm error (TRUS image slice thickness is 2 mm). No significant difference is observed (P = 0.83) on tip localization between our results with the ground truth. Compared with U-Net and deeply supervised attention U-Net, the proposed method delivers a significant improvement on both shaft error and tip error (P < 0.05).
We proposed a new segmentation method to precisely localize the tips and shafts of multiple needles in 3D TRUS images of HDR prostate brachytherapy. The 3D rendering of the needles could help clinicians to evaluate the needle placements. It paves the way for the development of real-time plan dose assessment tools that can further elevate the quality and outcome of HDR prostate brachytherapy.
超声(US)引导高剂量率(HDR)前列腺近距离放射治疗需要临床医生在手术室中经直肠超声(TRUS)引导下将 HDR 针(导管)放置到前列腺中。后续放射治疗计划的质量在很大程度上取决于针的位置,这取决于临床医生的经验水平和程序协议。如果有实时计划剂量分布,它可能是评估针放置的重要工具,从而有可能提高放射治疗计划的质量和治疗结果。然而,由于 US 成像中的信噪比(SNR)低,因此尚未实现实时多针 3D TRUS 中的实时分割,这是实时剂量映射的主要障碍。在这项研究中,我们提出了一种基于深度学习的方法,可实现 HDR 前列腺近距离放射治疗中 3D TRUS 图像中多个针的准确和实时数字化。
我们开发了一种基于 U-Net 架构的深度学习模型,用于分割 3D TRUS 图像中的多个针。我们的模型中考虑了注意力门,以提高对小针点的预测能力。此外,我们的模型还使用总变差(TV)正则化将针的空间连续性编码到模型中。该联合网络使用具有深度监督策略的 3D TRUS 补丁进行训练,其中提供了二进制针注释图像作为地面实况。然后,使用训练好的网络对新患者的 TRUS 图像中的 HDR 针进行定位和分割。我们根据与手动定义的地面实况相比的针轴和针尖误差来评估我们提出的方法,并将我们的方法与其他最先进的方法(U-Net 和深度监督注意 U-Net)进行比较。
我们的方法检测到了 23 名 HDR 前列腺近距离放射治疗患者的 339 根针中的 96%的针,其轴误差为 0.290±0.236mm,针尖误差为 0.442±0.831mm。对于轴定位,我们的方法导致 96%的定位误差小于 0.8mm(针直径为 1.67mm),而对于针尖定位,我们的方法导致 75%的针的误差为 0mm,21%的针的误差为 2mm(TRUS 图像切片厚度为 2mm)。我们的结果与地面实况之间在针尖定位上没有观察到显著差异(P=0.83)。与 U-Net 和深度监督注意 U-Net 相比,所提出的方法在轴误差和针尖误差方面都有显著提高(P<0.05)。
我们提出了一种新的分割方法,可精确定位 HDR 前列腺近距离放射治疗中 3D TRUS 图像中的多个针的尖端和轴。针的 3D 渲染可以帮助临床医生评估针的位置。它为开发实时计划剂量评估工具铺平了道路,该工具可以进一步提高 HDR 前列腺近距离放射治疗的质量和结果。