IEEE Trans Med Imaging. 2020 Dec;39(12):4094-4101. doi: 10.1109/TMI.2020.3013107. Epub 2020 Nov 30.
Digital Breast Tomosynthesis (DBT) presents out-of-plane artifacts caused by features of high intensity. Given observed data and knowledge about the point spread function (PSF), deconvolution techniques recover data from a blurred version. However, a correct PSF is difficult to achieve and these methods amplify noise. When no information is available about the PSF, blind deconvolution can be used. Additionally, Total Variation (TV) minimization algorithms have achieved great success due to its virtue of preserving edges while reducing image noise. This work presents a novel approach in DBT through the study of out-of-plane artifacts using blind deconvolution and noise regularization based on TV minimization. Gradient information was also included. The methodology was tested using real phantom data and one clinical data set. The results were investigated using conventional 2D slice-by-slice visualization and 3D volume rendering. For the 2D analysis, the artifact spread function (ASF) and Full Width at Half Maximum (FWHMM) of the ASF were considered. The 3D quantitative analysis was based on the FWHM of disks profiles at 90°, noise and signal to noise ratio (SNR) at 0° and 90°. A marked visual decrease of the artifact with reductions of FWHM (2D) and FWHM (volume rendering) of 23.8% and 23.6%, respectively, was observed. Although there was an expected increase in noise level, SNR values were preserved after deconvolution. Regardless of the methodology and visualization approach, the objective of reducing the out-of-plane artifact was accomplished. Both for the phantom and clinical case, the artifact reduction in the z was markedly visible.
数字乳腺断层融合成像(DBT)呈现出由高强度特征引起的离轴伪影。鉴于观察到的数据和关于点扩散函数(PSF)的知识,反卷积技术可以从模糊版本中恢复数据。然而,正确的 PSF 很难获得,这些方法会放大噪声。当没有关于 PSF 的信息时,可以使用盲反卷积。此外,由于其在减少图像噪声的同时保留边缘的优点,总变差(TV)最小化算法取得了巨大成功。本工作通过使用盲反卷积和基于 TV 最小化的噪声正则化来研究离轴伪影,提出了一种新的 DBT 方法。还包括梯度信息。该方法使用真实的体模数据和一个临床数据集进行了测试。结果使用常规的 2D 切片可视化和 3D 体积渲染进行了研究。对于 2D 分析,考虑了伪影传播函数(ASF)和 ASF 的半高全宽(FWHMM)。3D 定量分析基于 90°处的磁盘轮廓的 FWHM、0°和 90°处的噪声和信噪比(SNR)。观察到伪影的明显视觉减少,FWHM(2D)和 FWHM(体积渲染)分别减少了 23.8%和 23.6%。尽管噪声水平预计会增加,但反卷积后 SNR 值得以保留。无论使用哪种方法和可视化方法,都可以达到减少离轴伪影的目的。对于体模和临床病例,在 z 方向上的伪影减少都非常明显。