Suppr超能文献

数字乳腺断层合成中使用统计迭代重建降低解剖伪影。

Reduced anatomical clutter in digital breast tomosynthesis with statistical iterative reconstruction.

机构信息

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.

Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.

出版信息

Med Phys. 2018 May;45(5):2009-2022. doi: 10.1002/mp.12864. Epub 2018 Apr 1.

Abstract

PURPOSE

Digital breast tomosynthesis (DBT) has been shown to somewhat alleviate the breast tissue overlapping issues of two-dimensional (2D) mammography. However, the improvement in current DBT systems over mammography is still limited. Statistical image reconstruction (SIR) methods have the potential to reduce through-plane artifacts in DBT, and thus may be used to further reduce anatomical clutter. The purpose of this work was to study the impact of SIR on anatomical clutter in the reconstructed DBT image volumes.

METHODS

An SIR with a slice-wise total variation (TV) regularizer was implemented to reconstruct DBT images which were compared with the clinical reconstruction method (filtered backprojection). The artifact spread function (ASF) was measured to quantify the reduction of the through-plane artifacts level in phantom studies and microcalcifications in clinical cases. The anatomical clutter was quantified by the anatomical noise power spectrum with a power law fitting model: NPS ( f) = α f . The β values were measured from the reconstructed image slices when the two reconstruction methods were applied to a cohort of clinical breast exams (N = 101) acquired using Hologic Selenia Dimensions DBT systems.

RESULTS

The full width half maximum (FWHM) of the measured ASF was reduced from 8.7 ± 0.1 mm for clinical reconstruction to 6.5 ± 0.1 mm for SIR which yields a 25% reduction in FWHM in phantom studies and the same amount of ASF reduction was also found in clinical measurements from microcalcifications. The measured β values for the two reconstruction methods were 3.17 ± 0.36 and 2.14 ± 0.39 for the clinical reconstruction method and the SIR method, respectively. This difference was statistically significant (P << 0.001). The dependence of β on slice location using either method was negligible.

CONCLUSIONS

Statistical image reconstruction enabled a significant reduction of both the through-plane artifacts level and anatomical clutter in the DBT reconstructions. The β value was found to be β≈2.14 with the SIR method. This value stays in the middle between the β≈1.8 for cone beam CT and β≈3.2 for mammography. In contrast, the measured β value in the clinical reconstructions (β≈3.17) remains close to that of mammography.

摘要

目的

数字乳腺断层合成术(DBT)已被证明在一定程度上缓解了二维(2D)乳腺摄影中乳房组织重叠的问题。然而,目前 DBT 系统相对于乳腺摄影的改善仍然有限。统计图像重建(SIR)方法有可能减少 DBT 中的平面内伪影,因此可用于进一步减少解剖学干扰。本研究旨在研究 SIR 对重建的 DBT 图像体积中解剖学干扰的影响。

方法

实现了具有切片总变分(TV)正则化的 SIR,用于重建 DBT 图像,并与临床重建方法(滤波反投影)进行比较。在体模研究中,通过测量artifact spread function (ASF) 来量化平面内伪影水平的降低,在临床病例中通过测量微钙化来量化。解剖学干扰通过解剖学噪声功率谱进行量化,该功率谱采用幂律拟合模型:NPS(f)=αf。β值是通过对应用于霍洛捷 Selenia Dimensions DBT 系统采集的 101 例临床乳腺检查的重建图像切片进行测量得到的。

结果

在体模研究中,测量的 ASF 的半峰全宽(FWHM)从临床重建的 8.7 ± 0.1mm 降低到 SIR 的 6.5 ± 0.1mm,这使得 FWHM 降低了 25%,在临床微钙化测量中也发现了相同数量的 ASF 降低。两种重建方法的测量β值分别为临床重建方法的 3.17 ± 0.36 和 SIR 方法的 2.14 ± 0.39。这一差异具有统计学意义(P<<0.001)。使用任一种方法,β值随切片位置的变化可以忽略不计。

结论

SIR 使 DBT 重建中的平面内伪影水平和解剖学干扰显著降低。使用 SIR 方法,β值为β≈2.14。该值介于锥形束 CT 的β≈1.8 和乳腺摄影的β≈3.2 之间。相比之下,在临床重建中测量的β值(β≈3.17)仍接近乳腺摄影的β值。

相似文献

1
Reduced anatomical clutter in digital breast tomosynthesis with statistical iterative reconstruction.
Med Phys. 2018 May;45(5):2009-2022. doi: 10.1002/mp.12864. Epub 2018 Apr 1.
2
DIR-DBTnet: Deep iterative reconstruction network for three-dimensional digital breast tomosynthesis imaging.
Med Phys. 2021 May;48(5):2289-2300. doi: 10.1002/mp.14779. Epub 2021 Mar 16.
4
Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
Radiol Med. 2016 Feb;121(2):81-92. doi: 10.1007/s11547-015-0583-4. Epub 2015 Sep 18.
9
10
[Assessment of imaging performance of digital breast tomosynthesis based on systematic simulation].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jun 20;41(6):898-908. doi: 10.12122/j.issn.1673-4254.2021.06.13.

引用本文的文献

2
[Assessment of imaging performance of digital breast tomosynthesis based on systematic simulation].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jun 20;41(6):898-908. doi: 10.12122/j.issn.1673-4254.2021.06.13.
4
Relative Contributions of Anatomical and Quantum Noise in Signal Detection and Perception of Tomographic Digital Breast Images.
IEEE Trans Med Imaging. 2020 Nov;39(11):3321-3330. doi: 10.1109/TMI.2020.2991295. Epub 2020 Oct 28.
5
An Enhanced SMART-RECON Algorithm for Time-Resolved C-Arm Cone-Beam CT Imaging.
IEEE Trans Med Imaging. 2020 Jun;39(6):1894-1905. doi: 10.1109/TMI.2019.2960720. Epub 2019 Dec 20.
6
Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives.
Radiology. 2019 Nov;293(2):246-259. doi: 10.1148/radiol.2019182627. Epub 2019 Sep 24.
7
Learning to Reconstruct Computed Tomography Images Directly From Sinogram Data Under A Variety of Data Acquisition Conditions.
IEEE Trans Med Imaging. 2019 Oct;38(10):2469-2481. doi: 10.1109/TMI.2019.2910760. Epub 2019 Apr 11.
8
Imaging of fiber-like structures in digital breast tomosynthesis.
J Med Imaging (Bellingham). 2019 Jul;6(3):031404. doi: 10.1117/1.JMI.6.3.031404. Epub 2019 Jan 11.

本文引用的文献

1
Detector Blur and Correlated Noise Modeling for Digital Breast Tomosynthesis Reconstruction.
IEEE Trans Med Imaging. 2018 Jan;37(1):116-127. doi: 10.1109/TMI.2017.2732824. Epub 2017 Jul 27.
5
Alternating dual updates algorithm for X-ray CT reconstruction on the GPU.
IEEE Trans Comput Imaging. 2015 Sep;1(3):186-199. doi: 10.1109/TCI.2015.2479555. Epub 2015 Sep 17.
6
Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction.
IEEE Trans Med Imaging. 2016 Apr;35(4):1090-8. doi: 10.1109/TMI.2015.2508780. Epub 2015 Dec 17.
7
Development and experience of quality control methods for digital breast tomosynthesis systems.
Br J Radiol. 2015;88(1056):20150324. doi: 10.1259/bjr.20150324. Epub 2015 Oct 14.
9
Total variation minimization filter for DBT imaging.
Med Phys. 2015 Jun;42(6):2827-36. doi: 10.1118/1.4919680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验