Suppr超能文献

使用多领域模拟训练变分网络:声速图像重建。

Training Variational Networks With Multidomain Simulations: Speed-of-Sound Image Reconstruction.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2584-2594. doi: 10.1109/TUFFC.2020.3010186. Epub 2020 Nov 24.

Abstract

Speed-of-sound (SoS) has been shown as a potential biomarker for breast cancer imaging, successfully differentiating malignant tumors from benign ones. SoS images can be reconstructed from time-of-flight measurements from ultrasound images acquired using conventional handheld ultrasound transducers. Variational networks (VNs) have recently been shown to be a potential learning-based approach for optimizing inverse problems in image reconstruction. Despite earlier promising results, these methods, however, do not generalize well from simulated to acquired data, due to the domain shift. In this work, we present for the first time a VN solution for a pulse-echo SoS image reconstruction problem using diverging waves with conventional transducers and single-sided tissue access. This is made possible by incorporating simulations with varying complexity into training. We use loop unrolling of gradient descent with momentum, with an exponentially weighted loss of outputs at each unrolled iteration in order to regularize the training. We learn norms as activation functions regularized to have smooth forms for robustness to input distribution variations. We evaluate reconstruction quality on the ray-based and full-wave simulations as well as on the tissue-mimicking phantom data, in comparison with a classical iterative [limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)] optimization of this image reconstruction problem. We show that the proposed regularization techniques combined with multisource domain training yield substantial improvements in the domain adaptation capabilities of VN, reducing the median root mean squared error (RMSE) by 54% on a wave-based simulation data set compared to the baseline VN. We also show that on data acquired from a tissue-mimicking breast phantom, the proposed VN provides improved reconstruction in 12 ms.

摘要

声速(SoS)已被证明是一种潜在的乳腺癌成像生物标志物,可成功区分恶性肿瘤和良性肿瘤。SoS 图像可以通过使用传统手持式超声换能器获取的超声图像的飞行时间测量值来重建。变分网络(VN)最近已被证明是一种潜在的基于学习的方法,可用于优化图像重建中的逆问题。尽管早期的结果很有希望,但由于域偏移,这些方法并不能很好地从模拟数据推广到实际采集的数据。在这项工作中,我们首次提出了一种使用常规换能器和单侧组织接入的发散波进行脉冲回波 SoS 图像重建问题的 VN 解决方案。这是通过将具有不同复杂度的模拟纳入训练来实现的。我们使用带有动量的梯度下降循环展开,在每个展开迭代处输出的指数加权损失,以正则化训练。我们学习规范作为激活函数进行正则化,使其具有平滑形式,以提高对输入分布变化的鲁棒性。我们在基于射线的和全波模拟以及组织模拟体模数据上评估重建质量,并与该图像重建问题的经典迭代[有限记忆布罗伊登-弗莱彻-戈德法布-肖诺(L-BFGS)]优化进行比较。我们表明,所提出的正则化技术与多源域训练相结合,可以大大提高 VN 的域自适应能力,与基线 VN 相比,在基于波的模拟数据集上,中位数均方根误差(RMSE)降低了 54%。我们还表明,在从组织模拟乳房体模采集的数据上,所提出的 VN 可在 12 毫秒内提供改进的重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验