Bezek Can Deniz, Haas Maxim, Rau Richard, Goksel Orcun
IEEE Trans Med Imaging. 2024 Oct 14;PP. doi: 10.1109/TMI.2024.3480690.
Speed-of-sound (SoS) is an emerging ultrasound contrast modality, where pulse-echo techniques using conventional transducers offer multiple benefits. For estimating tissue SoS distributions, spatial domain reconstruction from relative speckle shifts between different beamforming sequences is a promising approach. This operates based on a forward model that relates the sought local values of SoS to observed speckle shifts, for which the associated image reconstruction inverse problem is solved. The reconstruction accuracy thus highly depends on the hand-crafted forward imaging model. In this work, we propose to learn the SoS imaging model based on data. We introduce a convolutional formulation of the pulse-echo SoS imaging problem such that the entire field-of-view requires a single unified kernel, the learning of which is then tractable and robust. We present least-squares estimation of such convolutional kernel, which can further be constrained and regularized for numerical stability. In experiments, we show that a forward model learned from k-Wave simulations reduces the contrast error of SoS reconstructions by 38%, compared to a conventional hand-crafted line-based wave-path model. This simulation-learned model generalizes successfully to acquired phantom data, reducing the contrast error compared to the conventional hand-crafted alternative. We successfully demonstrate the feasibility of learning machine-specific kernels as well as one-shot learning from a single image. On in-vivo data of a cancerous breast tumor, the phantom-learned model exhibits an SoS contrast of 34.6 m/s, as an impressive improvement over the conventional model contrast of merely 3.4 m/s.
声速(SoS)是一种新兴的超声造影模态,使用传统换能器的脉冲回波技术具有多种优势。对于估计组织的声速分布,基于不同波束形成序列之间相对散斑位移的空间域重建是一种很有前景的方法。这一方法基于一个正向模型运行,该模型将所寻求的局部声速值与观测到的散斑位移相关联,并求解相关的图像重建逆问题。因此,重建精度高度依赖于手工制作的正向成像模型。在这项工作中,我们建议基于数据学习声速成像模型。我们引入了脉冲回波声速成像问题的卷积公式,使得整个视场只需要一个统一的内核,这样其学习就变得易于处理且稳健。我们提出了这种卷积内核的最小二乘估计,为了数值稳定性,该估计还可以进一步受到约束和正则化。在实验中,我们表明,与传统的基于手工制作的线的波路径模型相比,从k-Wave模拟中学习到的正向模型将声速重建的对比度误差降低了38%。这个通过模拟学习的模型成功地推广到了采集的体模数据上,与传统的手工制作的模型相比,降低了对比度误差。我们成功地证明了学习特定于机器的内核以及从单个图像进行一次性学习的可行性。在一个乳腺癌肿瘤的体内数据上,体模学习模型的声速对比度为34.6米/秒,相比传统模型仅3.4米/秒的对比度有了显著提高。