Suppr超能文献

用于视频人物重识别的自适应图表示学习

Adaptive Graph Representation Learning for Video Person Re-identification.

作者信息

Wu Yiming, Bourahla Omar El Farouk, Li Xi, Wu Fei, Tian Qi, Zhou Xue

出版信息

IEEE Trans Image Process. 2020 Jun 17;PP. doi: 10.1109/TIP.2020.3001693.

Abstract

Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person Re-ID is to effectively construct discriminative and robust video feature representations for many complicated situations. Part-based approaches employ spatial and temporal attention to extract representative local features. While correlations between parts are ignored in the previous methods, to leverage the relations of different parts, we propose an innovative adaptive graph representation learning scheme for video person Re-ID, which enables the contextual interactions between relevant regional features. Specifically, we exploit the pose alignment connection and the feature affinity connection to construct an adaptive structure-aware adjacency graph, which models the intrinsic relations between graph nodes. We perform feature propagation on the adjacency graph to refine regional features iteratively, and the neighbor nodes' information is taken into account for part feature representation. To learn compact and discriminative representations, we further propose a novel temporal resolution-aware regularization, which enforces the consistency among different temporal resolutions for the same identities. We conduct extensive evaluations on four benchmarks, i.e. iLIDS-VID, PRID2011, MARS, and DukeMTMC-VideoReID, experimental results achieve the competitive performance which demonstrates the effectiveness of our proposed method. Code is available at https://github.com/weleen/AGRL.pytorch.

摘要

近年来,深度学习模型在视频人物重识别(Re-ID)中的应用取得了显著进展。视频人物重识别的一个关键因素是要在许多复杂情况下有效地构建具有判别力和鲁棒性的视频特征表示。基于部分的方法利用空间和时间注意力来提取具有代表性的局部特征。虽然之前的方法忽略了部分之间的相关性,但为了利用不同部分之间的关系,我们提出了一种用于视频人物重识别的创新自适应图表示学习方案,该方案能够实现相关区域特征之间的上下文交互。具体来说,我们利用姿态对齐连接和特征亲和连接来构建一个自适应结构感知邻接图,该图对图节点之间的内在关系进行建模。我们在邻接图上进行特征传播,以迭代地细化区域特征,并在部分特征表示中考虑邻居节点的信息。为了学习紧凑且具有判别力的表示,我们进一步提出了一种新颖的时间分辨率感知正则化方法,该方法强制相同身份在不同时间分辨率之间保持一致性。我们在四个基准数据集上进行了广泛的评估,即iLIDS-VID、PRID2011、MARS和DukeMTMC-VideoReID,实验结果取得了具有竞争力的性能,证明了我们提出的方法的有效性。代码可在https://github.com/weleen/AGRL.pytorch获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验