Suppr超能文献

面向一次性视频人物重识别的迭代局部-全局协作学习

Iterative Local-Global Collaboration Learning towards One-Shot Video Person Re-Identification.

作者信息

Liu Meng, Qu Leigang, Nie Liqiang, Liu Maofu, Duan Lingyu, Chen Baoquan

出版信息

IEEE Trans Image Process. 2020 Oct 2;PP. doi: 10.1109/TIP.2020.3026625.

Abstract

Video person re-identification (video Re-ID) plays an important role in surveillance video analysis and has gained increasing attention recently. However, existing supervised methods require vast labeled identities across cameras, resulting in poor scalability in practical applications. Although some unsupervised approaches have been exploited for video Re-ID, they are still in their infancy due to the complex nature of learning discriminative features on unlabelled data. In this paper, we focus on one-shot video Re-ID and present an iterative local-global collaboration learning approach to learning robust and discriminative person representations. Specifically, it jointly considers the global video information and local frame sequence information to better capture the diverse appearance of the person for feature learning and pseudo-label estimation. Moreover, as the cross-entropy loss may induce the model to focus on identity-irrelevant factors, we introduce the variational information bottleneck as a regularization term to train the model together. It can help filter undesirable information and characterize subtle differences among persons. Since accuracy cannot always be guaranteed for pseudo-labels, we adopt a dynamic selection strategy to select part of pseudo-labeled data with higher confidence to update the training set and re-train the learning model. During training, our method iteratively executes the feature learning, pseudo-label estimation, and dynamic sample selection until all the unlabeled data have been seen. Extensive experiments on two public datasets, i.e., DukeMTMC-VideoReID and MARS, have verified the superiority of our model to several cutting-edge competitors.

摘要

视频人物重识别(video Re-ID)在监控视频分析中起着重要作用,并且最近受到了越来越多的关注。然而,现有的监督方法需要跨摄像头的大量标注身份,导致在实际应用中的扩展性较差。尽管已经有一些无监督方法被用于视频Re-ID,但由于在未标注数据上学习判别特征的复杂性,它们仍处于起步阶段。在本文中,我们专注于一次性视频Re-ID,并提出一种迭代的局部-全局协作学习方法来学习鲁棒且有判别力的人物表示。具体而言,它联合考虑全局视频信息和局部帧序列信息,以更好地捕捉人物的多样外观用于特征学习和伪标签估计。此外,由于交叉熵损失可能会导致模型关注与身份无关的因素,我们引入变分信息瓶颈作为正则化项来一起训练模型。它可以帮助过滤不需要的信息并刻画人物之间的细微差异。由于伪标签的准确性不能总是得到保证,我们采用动态选择策略来选择部分具有较高置信度的伪标签数据来更新训练集并重新训练学习模型。在训练过程中,我们的方法迭代地执行特征学习、伪标签估计和动态样本选择,直到所有未标注数据都被处理过。在两个公共数据集DukeMTMC-VideoReID和MARS上进行的大量实验验证了我们的模型相对于几个前沿竞争对手的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验