Suppr超能文献

Reconstructing Reflection Maps Using a Stacked-CNN for Mixed Reality Rendering.

作者信息

Chalmers Andrew, Zhao Junhong, Medeiros Daniel, Rhee Taehyun

出版信息

IEEE Trans Vis Comput Graph. 2021 Oct;27(10):4073-4084. doi: 10.1109/TVCG.2020.3001917. Epub 2021 Sep 1.

Abstract

Corresponding lighting and reflectance between real and virtual objects is important for spatial presence in augmented and mixed reality (AR and MR) applications. We present a method to reconstruct real-world environmental lighting, encoded as a reflection map (RM), from a conventional photograph. To achieve this, we propose a stacked convolutional neural network (SCNN) that predicts high dynamic range (HDR) 360 RMs with varying roughness from a limited field of view, low dynamic range photograph. The SCNN is progressively trained from high to low roughness to predict RMs at varying roughness levels, where each roughness level corresponds to a virtual object's roughness (from diffuse to glossy) for rendering. The predicted RM provides high-fidelity rendering of virtual objects to match with the background photograph. We illustrate the use of our method with indoor and outdoor scenes trained on separate indoor/outdoor SCNNs showing plausible rendering and composition of virtual objects in AR/MR. We show that our method has improved quality over previous methods with a comparative user study and error metrics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验