IEEE Trans Nanobioscience. 2020 Oct;19(4):589-597. doi: 10.1109/TNB.2020.3004481. Epub 2020 Jun 23.
Fundus photography has been widely used for inspecting eye disorders by ophthalmologists or computer algorithms. Biomarkers related to retinal vessels plays an essential role to detect early diabetes. To quantify vascular biomarkers or the corresponding changes, an accurate artery and vein classification is necessary. In this work, we propose a new framework to boost local vessel classification with a global vascular network model using graph convolution. We compare our proposed method with two traditional state-of-the-art methods on a testing dataset of 750 images from the Maastricht Study. After incorporating global information, our model achieves the best accuracy of 86.45% compared to 85.5% from convolutional neural networks (CNN) and 82.9% from handcrafted pixel feature classification (HPFC). Our model also obtains the best area under receiver operating characteristic curve (AUC) of 0.95, compared to 0.93 from CNN and 0.90 from HPFC. The new classification framework has the advantage of easy deployment on top of local classification features. It corrects the local classification error by minimizing global classification error and it brings free additional classification performance.
眼底摄影被眼科医生或计算机算法广泛用于检查眼部疾病。与视网膜血管相关的生物标志物在早期糖尿病检测中起着至关重要的作用。为了量化血管生物标志物或相应的变化,需要对动脉和静脉进行准确的分类。在这项工作中,我们提出了一种新的框架,通过使用图卷积来增强局部血管分类的全局血管网络模型。我们将我们的方法与两种传统的最先进的方法在马斯特里赫特研究的 750 张测试图像数据集上进行了比较。在纳入全局信息后,我们的模型实现了 86.45%的最佳准确性,而卷积神经网络 (CNN) 的准确性为 85.5%,手工制作的像素特征分类 (HPFC) 的准确性为 82.9%。我们的模型还获得了最佳的接收器操作特征曲线 (AUC) 0.95,而 CNN 的 AUC 为 0.93,HPFC 的 AUC 为 0.90。新的分类框架具有易于在局部分类特征之上部署的优势。它通过最小化全局分类错误来纠正局部分类错误,并带来免费的额外分类性能。