Suppr超能文献

用于视网膜血管分割的尺度空间逼近卷积神经网络。

Scale-space approximated convolutional neural networks for retinal vessel segmentation.

机构信息

Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, South Korea.

Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, South Korea.

出版信息

Comput Methods Programs Biomed. 2019 Sep;178:237-246. doi: 10.1016/j.cmpb.2019.06.030. Epub 2019 Jun 29.

Abstract

BACKGROUND AND OBJECTIVE

Retinal fundus images are widely used to diagnose retinal diseases and can potentially be used for early diagnosis and prevention of chronic vascular diseases and diabetes. While various automatic retinal vessel segmentation methods using deep learning have been proposed, they are mostly based on common CNN structures developed for other tasks such as classification.

METHODS

We present a novel and simple multi-scale convolutional neural network (CNN) structure for retinal vessel segmentation. We first provide a theoretical analysis of existing multi-scale structures based on signal processing. In previous structures, multi-scale representations are achieved through downsampling by subsampling and decimation. By incorporating scale-space theory, we propose a simple yet effective multi-scale structure for CNNs using upsampling, which we term scale-space approximated CNN (SSANet). Based on further analysis of the effects of the SSA structure within a CNN, we also incorporate residual blocks, resulting in a multi-scale CNN that outperforms current state-of-the-art methods.

RESULTS

Quantitative evaluations are presented as the area-under-curve (AUC) of the receiver operating characteristic (ROC) curve and the precision-recall curve, as well as accuracy, for four publicly available datasets, namely DRIVE, STARE, CHASE_DB1, and HRF. For the CHASE_DB1 set, the SSANet achieves state-of-the-art AUC value of 0.9916 for the ROC curve. An ablative analysis is presented to analyze the contribution of different components of the SSANet to the performance improvement.

CONCLUSIONS

The proposed retinal SSANet achieves state-of-the-art or comparable accuracy across publicly available datasets, especially improving segmentation for thin vessels, vessel junctions, and central vessel reflexes.

摘要

背景与目的

眼底图像被广泛用于诊断视网膜疾病,并且可能被用于慢性血管疾病和糖尿病的早期诊断和预防。尽管已经提出了许多使用深度学习的自动视网膜血管分割方法,但它们大多基于为其他任务(如分类)开发的常见 CNN 结构。

方法

我们提出了一种新颖而简单的多尺度卷积神经网络(CNN)结构用于视网膜血管分割。我们首先基于信号处理提供了对现有多尺度结构的理论分析。在之前的结构中,多尺度表示是通过子采样和抽取进行下采样来实现的。通过结合尺度空间理论,我们提出了一种简单而有效的 CNN 多尺度结构,我们称之为尺度空间逼近 CNN(SSANet)。基于对 CNN 中 SSA 结构的进一步分析,我们还结合了残差块,从而产生了一种性能优于当前最先进方法的多尺度 CNN。

结果

我们提出了四个公开数据集(DRIVE、STARE、CHASE_DB1 和 HRF)的定量评估,包括接收者操作特征(ROC)曲线和精度、召回率曲线的 AUC 以及准确率。对于 CHASE_DB1 数据集,SSANet 在 ROC 曲线上达到了 0.9916 的 AUC 值。我们进行了消融分析以分析 SSANet 不同组件对性能提升的贡献。

结论

所提出的视网膜 SSANet 在公开数据集上达到了或可比的准确性,特别是在改善细血管、血管分叉和中央血管反射的分割方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验