Suppr超能文献

糖苷水解酶(PelA)固定化可防止铜绿假单胞菌在基于纤维素的创伤敷料上形成生物膜。

Glycoside hydrolase (PelA) immobilization prevents Pseudomonas aeruginosa biofilm formation on cellulose-based wound dressing.

机构信息

Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastow Avenue, 71-311, Szczecin, Poland.

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311, Szczecin, Poland.

出版信息

Carbohydr Polym. 2020 Oct 15;246:116625. doi: 10.1016/j.carbpol.2020.116625. Epub 2020 Jun 12.

Abstract

Bacterial cellulose (BC) is recognized as a wound dressing material well-suited for chronic wounds; however, it has no intrinsic antimicrobial activity. Further, the formation of biofilms can limit the effectiveness of the pre-saturation of BC with antimicrobial agents. Here, to hinder biofilm formation by P. aeruginosa, we immobilized the hydrolytic domain of PelA (a glycohydrolase involved in the synthesis of biofilm polysaccharide Pel) on the surface of BC. The immobilization of 32.35 ± 1.05 mg PelA per g BC membrane resulted in an eight-fold higher P. aeruginosa cell detachment from BC membrane, indicating reduced biofilm matrix stability. Further, 1D and 2D infrared spectroscopy analysis indicated systematic reduction of polysaccharide biofilm elements, confirming the specificity of immobilized PelA. Importantly, BC-PelA was not cytotoxic towards L929 fibroblast cells. Thus, we conclude that PelA can be used in BC wound dressings for safe and specific protection against biofilm formation by P. aeruginosa.

摘要

细菌纤维素 (BC) 被认为是一种非常适合慢性伤口的伤口敷料材料;然而,它本身没有抗菌活性。此外,生物膜的形成会限制抗菌剂预饱和 BC 的效果。在这里,为了阻止铜绿假单胞菌形成生物膜,我们将 PelA 的水解结构域(一种参与生物膜多糖 Pel 合成的糖水解酶)固定在 BC 的表面。将 32.35 ± 1.05 mg PelA/g BC 膜固定在 BC 膜上,导致铜绿假单胞菌细胞从 BC 膜上的脱落增加了八倍,表明生物膜基质的稳定性降低。此外,1D 和 2D 红外光谱分析表明多糖生物膜元素的系统减少,证实了固定化 PelA 的特异性。重要的是,BC-PelA 对 L929 成纤维细胞没有细胞毒性。因此,我们得出结论,PelA 可用于 BC 伤口敷料,以安全且有针对性地防止铜绿假单胞菌形成生物膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验