Suppr超能文献

铜绿假单胞菌生物膜胞外多糖:组装、功能和降解。

Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.

机构信息

Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada.

Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.

出版信息

FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.

Abstract

The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.

摘要

生物膜基质是一个堡垒;它为细菌提供了一个保护性和滋养性的屏障,使它们能够在各种环境中生长和适应。基质中存在着多种不同的成分,包括水、脂质、蛋白质、细胞外 DNA、RNA、膜泡、噬菌体和胞外多糖。作为其生物膜基质的一部分,铜绿假单胞菌在基因上能够产生三种化学性质不同的胞外多糖——藻酸盐、Pel 和 Psl——它们在生物膜形成和感染过程中的免疫逃避中都有独特的作用。这些聚合物是通过高度保守的分泌机制产生的,涉及许多跨越细菌内外膜的蛋白质。实验确定的结构、对尚未解决结构的蛋白质的预测建模以及结构同源性比较使我们能够深入了解这些分泌系统的分子机制,从聚合物合成到修饰和输出。在这里,我们回顾了最近的进展,这些进展增强了我们对铜绿假单胞菌多蛋白胞外多糖生物合成复合物的理解,以及这些系统中的糖苷水解酶/裂解酶如何被用于抗菌应用。

相似文献

1
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.
3
The role of exopolysaccharides Psl and Pel in resistance of to the oxidative stressors sodium hypochlorite and hydrogen peroxide.
Microbiol Spectr. 2024 Oct 3;12(10):e0092224. doi: 10.1128/spectrum.00922-24. Epub 2024 Aug 28.
4
Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture.
Appl Environ Microbiol. 2011 Aug;77(15):5238-46. doi: 10.1128/AEM.00637-11. Epub 2011 Jun 10.
5
Regulation of Biofilm Exopolysaccharide Biosynthesis and Degradation in .
Annu Rev Microbiol. 2022 Sep 8;76:413-433. doi: 10.1146/annurev-micro-041320-111355. Epub 2022 Jun 2.
6
Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated.
Environ Microbiol. 2012 Aug;14(8):1995-2005. doi: 10.1111/j.1462-2920.2012.02753.x. Epub 2012 Apr 19.
8
Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA.
J Bacteriol. 2022 May 17;204(5):e0056821. doi: 10.1128/jb.00568-21. Epub 2022 Apr 13.
10
Contribution of Exopolysaccharides Pel and Psl to Wound Infections.
Front Cell Infect Microbiol. 2022 Apr 7;12:835754. doi: 10.3389/fcimb.2022.835754. eCollection 2022.

引用本文的文献

1
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches.
Antibiotics (Basel). 2025 Aug 6;14(8):802. doi: 10.3390/antibiotics14080802.
3
Alginate lyase immobilized algae microrobots: minimally invasive therapy for biofilm penetration and eradication.
Acta Pharm Sin B. 2025 Jun;15(6):3259-3272. doi: 10.1016/j.apsb.2025.03.034. Epub 2025 Mar 18.
4
Auto-aggregation in is driven by the Pel polysaccharide.
mBio. 2025 Jul 7:e0119625. doi: 10.1128/mbio.01196-25.
7
Genetic analysis of flagellar-mediated surface sensing by PA14.
J Bacteriol. 2025 Jun 5:e0052024. doi: 10.1128/jb.00520-24.
8
Pseudomonas aeruginosa biofilm: treatment strategies to combat infection.
Arch Microbiol. 2025 May 10;207(6):141. doi: 10.1007/s00203-025-04346-8.
10
PelD is required downstream of c-di-GMP for host specialization of Pseudomonas lurida.
BMC Microbiol. 2025 Apr 16;25(1):220. doi: 10.1186/s12866-025-03945-1.

本文引用的文献

1
Pseudomonas aeruginosa AlgF is a protein-protein interaction mediator required for acetylation of the alginate exopolysaccharide.
J Biol Chem. 2023 Nov;299(11):105314. doi: 10.1016/j.jbc.2023.105314. Epub 2023 Oct 4.
3
Mechanism of resistance to phagocytosis and pulmonary persistence in mucoid .
Front Cell Infect Microbiol. 2023 Mar 15;13:1125901. doi: 10.3389/fcimb.2023.1125901. eCollection 2023.
6
The Sia System and c-di-GMP Play a Crucial Role in Controlling Cell-Association of Psl in Planktonic P. aeruginosa.
J Bacteriol. 2022 Dec 20;204(12):e0033522. doi: 10.1128/jb.00335-22. Epub 2022 Nov 30.
8
The biofilm life cycle: expanding the conceptual model of biofilm formation.
Nat Rev Microbiol. 2022 Oct;20(10):608-620. doi: 10.1038/s41579-022-00767-0. Epub 2022 Aug 3.
9
Preclinical Evaluation of Recombinant Microbial Glycoside Hydrolases as Antibiofilm Agents in Acute Pulmonary Pseudomonas aeruginosa Infection.
Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0005222. doi: 10.1128/aac.00052-22. Epub 2022 Jul 7.
10
Regulation of Biofilm Exopolysaccharide Biosynthesis and Degradation in .
Annu Rev Microbiol. 2022 Sep 8;76:413-433. doi: 10.1146/annurev-micro-041320-111355. Epub 2022 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验