Department of Sport & Leisure Studies, College of Arts & Physical Education, Shingyeong University, Hwaseong-si 18274, Korea.
Department of Sport & Leisure Studies, Division of Arts & Health, Myongji College, Seoul 03656, Korea.
Int J Environ Res Public Health. 2020 Aug 2;17(15):5577. doi: 10.3390/ijerph17155577.
The Korean government (Ministry of Culture, Sports and Tourism, Ministry of Health and Welfare, and Ministry of Education) has framed policies and conducted many projects to encourage adolescents to be more physically active. Despite these efforts, the participation rate of physical activity in Korean adolescents keeps decreasing. Thus, the purpose of this study was to analyze the perception of sports and physical activity in Korean adolescents through big data analysis of the last 10 years and to provide research data and statistical direction with regard to sports and physical activity participation in Korean adolescents. For data collection, data from 1 January 2010 to 31 December 2019 were collected from Naver (NAVER Corp., Seongnam, Korea), Daum (Kakao Corp., Jeju, Korea), and Google (Alphabet Inc., Mountain View, CA, USA), which are the most widely used search engines in Korea, using TEXTOM 4.0 (The Imc Inc., Daegu, Korea), a big data collection and analysis solution. Keywords such as "adolescent + sports + physical activity" were used. TEXTOM 4.0 can generate various collection lists at once using keywords. Collected data were processed through text mining (frequency analysis, term frequency-inverse document frequency analysis) and social network analysis (SNA) (degree centrality, convergence of iterated correlations analysis) by using TEXTOM 4.0 and UCINET 6 social network analysis software (Analytic Technologies Corp., Lexington, KY, USA). A total of 9278 big data (10.36 MB) were analyzed. Frequency analysis of the top 50 terms through text mining showed exercise (872), mind (851), health (824), program (782), and burden (744) in a descending order. Term frequency-inverse document frequency analysis revealed exercise (2108.070), health (1961.843), program (1928.765), mind (1861.837), and burden (1722.687) in a descending order. SNA showed that the terms with the greatest degree of centrality were exercise (0.02857), program (0.02406), mind (0.02079), health (0.02062), and activity (0.01872) in a descending order. Convergence of the iterated correlations analysis indicated five clusters: exercise and health, child to adult, sociocultural development, therapy, and program. However, female gender, sports for all, stress, and wholesome did not have a high enough correlation to form one cluster. Thus, this study provides basic data and statistical direction to increase the rate of physical activity participation in Korean adolescents by drawing significant implications based on terms and clusters through bid data analysis.
韩国政府(文化体育观光部、保健福祉部、教育部)制定了政策并开展了许多项目,以鼓励青少年更加积极地参与体育活动。尽管做出了这些努力,韩国青少年参与体育活动的比例仍在持续下降。因此,本研究旨在通过对过去 10 年的大数据分析,了解韩国青少年对体育和体育活动的看法,并为韩国青少年参与体育和体育活动提供研究数据和统计方向。为了收集数据,使用了韩国最常用的搜索引擎 Naver(NAVER Corp.,城南市)、Daum(Kakao Corp.,济州岛)和 Google(Alphabet Inc.,山景城,CA),从 2010 年 1 月 1 日至 2019 年 12 月 31 日,使用大数据收集和分析解决方案 TEXTOM 4.0(The Imc Inc.,大邱)收集数据。使用了“青少年+运动+体育活动”等关键词。TEXTOM 4.0 可以使用关键词同时生成各种收集列表。收集的数据通过文本挖掘(频率分析、术语频率-逆文档频率分析)和社会网络分析(SNA)(中心度、迭代相关分析的收敛性)进行处理,使用 TEXTOM 4.0 和 UCINET 6 社会网络分析软件(Analytic Technologies Corp.,列克星敦,KY)。共分析了 9278 个大数据(10.36MB)。通过文本挖掘对前 50 个术语进行频率分析显示,运动(872)、思维(851)、健康(824)、项目(782)和负担(744)依次递减。术语频率-逆文档频率分析显示,运动(2108.070)、健康(1961.843)、项目(1928.765)、思维(1861.837)和负担(1722.687)依次递减。SNA 显示,中心度最大的术语依次为运动(0.02857)、项目(0.02406)、思维(0.02079)、健康(0.02062)和活动(0.01872)。迭代相关分析的收敛性表明存在五个聚类:运动和健康、儿童到成人、社会文化发展、治疗和项目。然而,女性、全民体育、压力和健康并没有形成一个聚类的相关性。因此,本研究通过对大数据进行分析,根据术语和聚类得出了有意义的结论,为提高韩国青少年的体育活动参与率提供了基本数据和统计方向。