Suppr超能文献

宽视场光学设计中的泽尼克单项式

Zernike monomials in wide field of view optical designs.

作者信息

Johnson Tim P, Sasian Jose

出版信息

Appl Opt. 2020 Aug 1;59(22):G146-G153. doi: 10.1364/AO.392305.

Abstract

Zernike polynomials are universal in optical modeling and testing of wavefronts; however, their polynomial behavior can cause a misinterpretation of individual aberrations. Wavefront profiles described by Zernike polynomials contain multiple terms with different orders of pupil radius (). Zernike polynomials are a sum of high and low orders of to minimize the RMS wavefront error and to preserve orthogonality. Since the low-order polynomials are still contained in the net Zernike sum, there is redundancy in individual monomials. Monomial aberrations, also known as Seidel or primary aberrations, are useful in studying an optical design's complexity, alignment, and field behavior. Zernike polynomial aberrations reported by optical design software are not indicative of individual (monomial) aberrations in wide field of view designs since the low-order polynomials are contaminated by higher order terms. An aberration node is the field location where an individual (monomial) aberration is zero. In this paper, a matrix method is shown to calculate the individual monomial aberrations given the set of Zernike polynomials. Monomial aberrations plotted as a function of field angle () indicate the field order () and the location of true aberration nodes. Contrarily, Zernike polynomial versus field (ZvF) plots can indicate false aberration nodes, due to the polynomial mixing of high- and low-order terms. Accurate knowledge of the monomial aberration nodes, converted from Zernike polynomials, provides the link between a ray-trace model or lab wavefront measurement and nodal aberration theory (NAT). This method is applied to two different optical designs: (1) 120° circular FOV fish-eye lens and (2) 120×4 rectangular FOV, off-axis, freeform four-mirror design.

摘要

泽尼克多项式在波前的光学建模和测试中具有通用性;然而,它们的多项式特性可能会导致对单个像差的误解。由泽尼克多项式描述的波前轮廓包含多个与不同瞳孔半径阶数()相关的项。泽尼克多项式是高次项和低次项的总和,以最小化均方根波前误差并保持正交性。由于低阶多项式仍包含在总的泽尼克和中,单个单项式存在冗余。单项式像差,也称为赛德尔像差或初级像差,在研究光学设计的复杂性、对准和视场特性方面很有用。光学设计软件报告的泽尼克多项式像差在宽视场设计中并不表示单个(单项式)像差,因为低阶多项式被高阶项污染了。像差节点是单个(单项式)像差为零的视场位置。在本文中,展示了一种矩阵方法,用于在给定泽尼克多项式集的情况下计算单个单项式像差。绘制为视场角()函数的单项式像差表示视场阶数()和真实像差节点的位置。相反,由于高阶项和低阶项的多项式混合,泽尼克多项式与视场(ZvF)图可能会显示虚假像差节点。从泽尼克多项式转换而来的单项式像差节点的准确知识提供了光线追迹模型或实验室波前测量与节点像差理论(NAT)之间的联系。该方法应用于两种不同的光学设计:(1)120°圆形视场鱼眼镜头和(2)120×4矩形视场、离轴、自由曲面四镜设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验