Suppr超能文献

使用快速孔径稳健事件驱动视觉流的实时高速运动预测

Real-Time High Speed Motion Prediction Using Fast Aperture-Robust Event-Driven Visual Flow.

作者信息

Akolkar Himanshu, Ieng Sio-Hoi, Benosman Ryad

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):361-372. doi: 10.1109/TPAMI.2020.3010468. Epub 2021 Dec 7.

Abstract

Optical flow is a crucial component of the feature space for early visual processing of dynamic scenes especially in new applications such as self-driving vehicles, drones and autonomous robots. The dynamic vision sensors are well suited for such applications because of their asynchronous, sparse and temporally precise representation of the visual dynamics. Many algorithms proposed for computing visual flow for these sensors suffer from the aperture problem as the direction of the estimated flow is governed by the curvature of the object rather than the true motion direction. Some methods that do overcome this problem by temporal windowing under-utilize the true precise temporal nature of the dynamic sensors. In this paper, we propose a novel multi-scale plane fitting based visual flow algorithm that is robust to the aperture problem and also computationally fast and efficient. Our algorithm performs well in many scenarios ranging from fixed camera recording simple geometric shapes to real world scenarios such as camera mounted on a moving car and can successfully perform event-by-event motion estimation of objects in the scene to allow for predictions of upto 500 ms i.e., equivalent to 10 to 25 frames with traditional cameras.

摘要

光流是动态场景早期视觉处理特征空间的关键组成部分,特别是在自动驾驶车辆、无人机和自主机器人等新应用中。动态视觉传感器非常适合此类应用,因为它们对视觉动态具有异步、稀疏和时间精确的表示。为这些传感器计算视觉流而提出的许多算法都存在孔径问题,因为估计流的方向由物体的曲率而非真实运动方向决定。一些通过时间窗处理克服此问题的方法未充分利用动态传感器真正精确的时间特性。在本文中,我们提出了一种基于多尺度平面拟合的新型视觉流算法,该算法对孔径问题具有鲁棒性,并且计算速度快、效率高。我们的算法在许多场景中都表现良好,从固定相机记录简单几何形状到现实世界场景,如安装在移动汽车上的相机,并且可以成功地对场景中的物体进行逐事件运动估计,以实现高达500毫秒的预测,即相当于传统相机的10到25帧。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验