NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland.
Nat Commun. 2023 Apr 15;14(1):2169. doi: 10.1038/s41467-023-37886-y.
Dynamic machine vision requires recognizing the past and predicting the future of a moving object based on present vision. Current machine vision systems accomplish this by processing numerous image frames or using complex algorithms. Here, we report motion recognition and prediction in recurrent photomemristor networks. In our system, a retinomorphic photomemristor array, working as dynamic vision reservoir, embeds past motion frames as hidden states into the present frame through inherent dynamic memory. The informative present frame facilitates accurate recognition of past and prediction of future motions with machine learning algorithms. This in-sensor motion processing capability eliminates redundant data flows and promotes real-time perception of moving objects for dynamic machine vision.
动态机器视觉需要基于当前的视觉来识别移动目标的过去和预测未来。当前的机器视觉系统通过处理大量的图像帧或使用复杂的算法来实现这一点。在这里,我们报告了在循环光电导电阻器网络中的运动识别和预测。在我们的系统中,类视网膜光电导电阻器阵列作为动态视觉储层,通过固有动态记忆将过去的运动帧作为隐藏状态嵌入到当前帧中。信息丰富的当前帧通过机器学习算法促进了过去和未来运动的准确识别和预测。这种传感器内的运动处理能力消除了冗余的数据流量,促进了对动态机器视觉中移动目标的实时感知。