IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):143-153. doi: 10.1109/TPAMI.2020.3012103. Epub 2021 Dec 7.
The susceptibility of super paramagnetic iron oxide (SPIO) particles makes them a useful contrast agent for different purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These methods rely on the phase, which is unreliable for high concentrations. We present in this study a novel Deep Learning method to quantify the SPIO concentration distribution. We acquired the data with a new sequence called View Line in which the field map information is encoded in the geometry of the image. The novelty of our network is that it uses residual blocks as the bottleneck and multiple decoders to improve the gradient flow in the network. Each decoder predicts a different part of the wavelet decomposition of the concentration map. This decomposition improves the estimation of the concentration, and also it accelerates the convergence of the model. We tested our SPIO concentration reconstruction technique with simulated images and data from actual scans from phantoms. The simulations were done using images from the IXI dataset, and the phantoms consisted of plastic cylinders containing agar with SPIO particles at different concentrations. In both experiments, the model was able to quantify the distribution accurately.
超顺磁氧化铁 (SPIO) 颗粒的易感性使它们成为 MRI 中不同目的的有用对比剂。这些颗粒通常通过弛豫率或测量它们产生的不均匀性来定量。这些方法依赖于相位,但对于高浓度来说,相位是不可靠的。我们在本研究中提出了一种新的深度学习方法来量化 SPIO 浓度分布。我们使用一种称为“View Line”的新序列来获取数据,其中场图信息编码在图像的几何形状中。我们的网络的新颖之处在于它使用残差块作为瓶颈,并使用多个解码器来改善网络中的梯度流。每个解码器预测浓度图的小波分解的不同部分。这种分解提高了浓度的估计,也加速了模型的收敛。我们使用模拟图像和来自实际扫描的 phantom 数据测试了我们的 SPIO 浓度重建技术。模拟是使用 IXI 数据集的图像进行的,phantom 由含有不同浓度 SPIO 颗粒的琼脂的塑料圆柱组成。在这两个实验中,该模型都能够准确地定量分布。