Suppr超能文献

基于机器学习的酰胺质子转移成像技术,使用部分合成的训练数据。

Machine learning-based amide proton transfer imaging using partially synthetic training data.

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Magn Reson Med. 2024 May;91(5):1908-1922. doi: 10.1002/mrm.29970. Epub 2023 Dec 14.

Abstract

PURPOSE

Machine learning (ML) has been increasingly used to quantify CEST effect. ML models are typically trained using either measured data or fully simulated data. However, training with measured data often lacks sufficient training data, whereas training with fully simulated data may introduce bias because of limited simulations pools. This study introduces a new platform that combines simulated and measured components to generate partially synthetic CEST data, and to evaluate its feasibility for training ML models to predict amide proton transfer (APT) effect.

METHODS

Partially synthetic CEST signals were created using an inverse summation of APT effects from simulations and the other components from measurements. Training data were generated by varying APT simulation parameters and applying scaling factors to adjust the measured components, achieving a balance between simulation flexibility and fidelity. First, tissue-mimicking CEST signals along with ground truth information were created using multiple-pool model simulations to validate this method. Second, an ML model was trained individually on partially synthetic data, in vivo data, and fully simulated data, to predict APT effect in rat brains bearing 9 L tumors.

RESULTS

Experiments on tissue-mimicking data suggest that the ML method using the partially synthetic data is accurate in predicting APT. In vivo experiments suggest that our method provides more accurate and robust prediction than the training using in vivo data and fully synthetic data.

CONCLUSION

Partially synthetic CEST data can address the challenges in conventional ML methods.

摘要

目的

机器学习(ML)已被越来越多地用于量化 CEST 效应。ML 模型通常使用测量数据或完全模拟数据进行训练。然而,使用测量数据进行训练通常缺乏足够的训练数据,而使用完全模拟数据进行训练可能会由于模拟池的限制而引入偏差。本研究介绍了一种新的平台,该平台结合了模拟和测量组件,以生成部分合成的 CEST 数据,并评估其用于训练 ML 模型以预测酰胺质子转移(APT)效应的可行性。

方法

部分合成的 CEST 信号是通过模拟的 APT 效应与测量组件的其他部分的逆求和创建的。通过改变 APT 模拟参数并应用缩放因子来调整测量组件,在模拟灵活性和保真度之间取得平衡,从而生成训练数据。首先,使用多池模型模拟生成组织模拟 CEST 信号及其真实信息,以验证此方法。其次,分别在部分合成数据、体内数据和完全模拟数据上训练 ML 模型,以预测 9L 肿瘤大鼠脑中的 APT 效应。

结果

组织模拟数据的实验表明,使用部分合成数据的 ML 方法在预测 APT 方面非常准确。体内实验表明,与使用体内数据和完全模拟数据进行训练相比,我们的方法提供了更准确和稳健的预测。

结论

部分合成的 CEST 数据可以解决传统 ML 方法中的挑战。

相似文献

1
Machine learning-based amide proton transfer imaging using partially synthetic training data.
Magn Reson Med. 2024 May;91(5):1908-1922. doi: 10.1002/mrm.29970. Epub 2023 Dec 14.
4
Imaging amide proton transfer and nuclear overhauser enhancement using chemical exchange rotation transfer (CERT).
Magn Reson Med. 2014 Aug;72(2):471-6. doi: 10.1002/mrm.24953. Epub 2013 Dec 2.
5
Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain.
Neuroimage. 2019 Apr 1;189:202-213. doi: 10.1016/j.neuroimage.2019.01.034. Epub 2019 Jan 14.
9
Amide proton transfer imaging of glioblastoma, neuroblastoma, and breast cancer cells on a 11.7 T magnetic resonance imaging system.
Magn Reson Imaging. 2019 Oct;62:181-190. doi: 10.1016/j.mri.2019.07.005. Epub 2019 Jul 11.
10
Direct radiofrequency saturation corrected amide proton transfer tumor MRI at 3T.
Magn Reson Med. 2019 Apr;81(4):2710-2719. doi: 10.1002/mrm.27562. Epub 2018 Nov 3.

引用本文的文献

1
CEST MRI data analysis using Kolmogorov-Arnold network (KAN) and Lorentzian-KAN (LKAN) models.
Magn Reson Med. 2025 Sep;94(3):1301-1317. doi: 10.1002/mrm.30548. Epub 2025 Jun 4.
2
Asymmetry analysis of nuclear Overhauser enhancement effect at -1.6 ppm in ischemic stroke.
Med Phys. 2025 May;52(5):2922-2937. doi: 10.1002/mp.17677. Epub 2025 Feb 11.

本文引用的文献

2
Assignment of molecular origins of NOE signal at -3.5 ppm in the brain.
Magn Reson Med. 2023 Aug;90(2):673-685. doi: 10.1002/mrm.29643. Epub 2023 Mar 17.
4
Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning.
Nat Biomed Eng. 2022 May;6(5):648-657. doi: 10.1038/s41551-021-00809-7. Epub 2021 Nov 11.
5
Amide Proton Transfer-Weighted MRI Might Help Distinguish Amnestic Mild Cognitive Impairment From a Normal Elderly Population.
Front Neurol. 2021 Oct 12;12:707030. doi: 10.3389/fneur.2021.707030. eCollection 2021.
6
Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease at 3 T.
Magn Reson Med. 2022 Mar;87(3):1529-1545. doi: 10.1002/mrm.29044. Epub 2021 Oct 17.
7
Synthetic data in machine learning for medicine and healthcare.
Nat Biomed Eng. 2021 Jun;5(6):493-497. doi: 10.1038/s41551-021-00751-8.
8
DeepSPIO: Super Paramagnetic Iron Oxide Particle Quantification Using Deep Learning in Magnetic Resonance Imaging.
IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):143-153. doi: 10.1109/TPAMI.2020.3012103. Epub 2021 Dec 7.
9
Artificial neural network for multi-echo gradient echo-based myelin water fraction estimation.
Magn Reson Med. 2021 Jan;85(1):380-389. doi: 10.1002/mrm.28407. Epub 2020 Jul 19.
10
A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging.
Neuroimage. 2020 Nov 1;221:117165. doi: 10.1016/j.neuroimage.2020.117165. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验