Suppr超能文献

Pr[m]:一种蛋白质基序发现算法。

Pr[m]: An Algorithm for Protein Motif Discovery.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):585-592. doi: 10.1109/TCBB.2020.2999262. Epub 2022 Feb 3.

Abstract

Motifs are the evolutionarily conserved patterns which are reported to serve the crucial structural and functional role. Identification of motif patterns in a set of protein sequences has been a prime concern for researchers in computational biology. The discovery of such a protein motif using existing algorithms is purely based on the parameters derived from sequence composition and length. However, the discovery of variable length motif remains a challenging task, as it is not possible to determine the length of a motif in advance. In current work, a k-mer based motif discovery approach called Pr[m], is proposed for the detection of the statistically significant un-gapped motif patterns, with or without wildcard characters. In order to analyze the performance of the proposed approach, a comparative study was performed with MEME and GLAM2, which are two widely used non-discriminative methods for motif discovery. A set of 7,500 test dataset were used to compare the performance of the proposed tool and the ones mentioned above. Pr[m] outperformed the existing methods in terms of predictive quality and performance. The proposed approach is hosted at https://bioserver.iiita.ac.in/Pr[m].

摘要

模体是进化上保守的模式,据报道,它们在结构和功能上起着至关重要的作用。在一组蛋白质序列中识别模体模式是计算生物学研究人员关注的首要问题。使用现有算法发现这样的蛋白质模体纯粹是基于从序列组成和长度中得出的参数。然而,可变长度模体的发现仍然是一项具有挑战性的任务,因为不可能预先确定模体的长度。在当前的工作中,提出了一种基于 k-mer 的模体发现方法,称为 Pr[m],用于检测具有或不具有通配符的统计上显著的无缺口模体模式。为了分析所提出方法的性能,与 MEME 和 GLAM2 进行了比较研究,这两种方法是用于模体发现的两种广泛使用的非判别方法。使用了一组 7500 个测试数据集来比较所提出工具和上述方法的性能。Pr[m]在预测质量和性能方面优于现有方法。该方法可在 https://bioserver.iiita.ac.in/Pr[m]上访问。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验