Li Han, Zhao Wei, Wu Xinhui, Tang Hong, Li Qiushi, Tan Jing, Wang Gong
CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China.
University of Chinese Academy of Science, Beijing 100049, China.
Polymers (Basel). 2020 Jul 31;12(8):1724. doi: 10.3390/polym12081724.
The in situ resource utilization of lunar regolith is of great significance for the development of planetary materials science and space manufacturing. The material extrusion deposition approach provides an advanced method for fabricating polylactide/lunar regolith simulant (PLA/CLRS-1) components. This work aims to fabricate 3D printed PLA-lunar regolith simulant (5 and 10 wt.%) components using the material extrusion 3D printing approach, and realize their solvent dissolution recycling process. The influence of the lunar regolith simulant on the mechanical and thermal properties of the 3D printed PLA/CLRS-1 composites is systematically studied. The microstructure of 3D printed PLA/CLRS-1 parts was investigated by scanning electron microscopy (SEM) and X-ray computed tomography (XCT) analysis. The results showed that the lunar regolith simulant can be fabricated and combined with a PLA matrix utilizing a 3D printing process, only slightly influencing the mechanical performance of printed specimens. Moreover, the crystallization process of PLA is obviously accelerated by the addition of CLRS-1 because of heterogeneous nucleation. Additionally, by using gel permeation chromatography (GPC) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) characterization, it is found that the 3D printing and recycling processes have a negligible influence on the chemical structure and molecular weight of the PLA/CLRS-1 composites. As a breakthrough, we successfully utilize the lunar regolith simulant to print components with satisfactory mechanical properties and confirm the feasibility of recycling and reusing 3D printed PLA/CLRS-1 components via the solvent dissolution recycling approach.
月球风化层的原位资源利用对于行星材料科学和太空制造的发展具有重要意义。材料挤出沉积方法为制造聚乳酸/月球风化层模拟物(PLA/CLRS-1)部件提供了一种先进的方法。这项工作旨在使用材料挤出3D打印方法制造3D打印的聚乳酸-月球风化层模拟物(5重量%和10重量%)部件,并实现其溶剂溶解回收过程。系统研究了月球风化层模拟物对3D打印的PLA/CLRS-1复合材料的力学和热性能的影响。通过扫描电子显微镜(SEM)和X射线计算机断层扫描(XCT)分析研究了3D打印的PLA/CLRS-1部件的微观结构。结果表明,利用3D打印工艺可以制造月球风化层模拟物并将其与PLA基体结合,仅对打印试样的力学性能有轻微影响。此外,由于异质成核作用,CLRS-1的加入明显加速了PLA的结晶过程。另外,通过凝胶渗透色谱(GPC)和衰减全反射傅里叶变换红外光谱(ATR-FTIR)表征发现,3D打印和回收过程对PLA/CLRS-1复合材料的化学结构和分子量的影响可忽略不计。作为一项突破,我们成功利用月球风化层模拟物打印出具有令人满意力学性能的部件,并证实了通过溶剂溶解回收方法对3D打印的PLA/CLRS-1部件进行回收和再利用的可行性。