Suppr超能文献

3D打印月球风化层模拟复合材料的热风化

Thermal Weathering of 3D-Printed Lunar Regolith Simulant Composites.

作者信息

Marnot Alexandra, Milliken Jami, Cho Jaehyun, Lin Zihao, Wong Chingping, Jones Jennifer M, Hill Curtis, Brettmann Blair

机构信息

School of Chemical and Biomolecular Engineering, Georgia Tech, Atlanta, Georgia 30332, United States.

Daniel Guggenheim School of Aerospace Engineering, Georgia Tech, Atlanta, Georgia 30332, United States.

出版信息

ACS Appl Eng Mater. 2024 Jul 27;2(8):2016-2026. doi: 10.1021/acsaenm.4c00158. eCollection 2024 Aug 23.

Abstract

The production of lunar regolith composites is a promising venture, especially when enabled by extrusion-based additive manufacturing techniques such as direct ink write. However, both three-dimensional (3D) printing production and usage of polymer composites containing regolish on the lunar surface are challenges due to harsh environmental conditions such as severe thermal cycling. While thermal degradation in polymer composites under thermal cycling has been studied, there is limited understanding of how polymer properties impact the mechanical performance of lunar regolith composites when both printing and usage are carried out under extreme thermal conditions. Here, we aim to bridge that gap through the creation of composites containing a lunar Highlands regolith simulant suspended in an ultraviolet (UV) curable binder, which were printed at -30 °C and thermally cycled between weekly lunar day (127 °C) and weekly night (-190 °C) temperatures. We validate that thermal stresses cause both physical and chemical degradation since the regolith simulant composites become stiffer, more porous, and show yellowing after exposure to thermal cycling. Moreover, we indicate that chemical degradation mechanisms seem to compete with residual polymerization in certain formulations. We attribute this phenomenon to partial crystallization of monomer species during printing at -30 °C, resulting in low vinyl bond conversion during initial curing. The results presented here shed light on the intricate interplay between thermal stresses, uncured polymer properties, and degradation mechanisms, which can help guide future use cases of regolith composites for lunar infrastructure needs.

摘要

月球风化层复合材料的生产是一项很有前景的事业,特别是当采用基于挤出的增材制造技术(如直接墨水书写)时。然而,由于诸如剧烈热循环等恶劣环境条件,在月球表面进行三维(3D)打印生产以及使用含有风化层的聚合物复合材料都面临挑战。虽然已经研究了热循环下聚合物复合材料的热降解,但对于在极端热条件下进行打印和使用时,聚合物性能如何影响月球风化层复合材料的机械性能,人们的了解还很有限。在此,我们旨在通过创建一种复合材料来弥补这一差距,该复合材料包含悬浮在紫外线(UV)可固化粘合剂中的月球高地风化层模拟物,这些复合材料在-30°C下打印,并在每周的月昼(127°C)和每周的月夜(-190°C)温度之间进行热循环。我们验证了热应力会导致物理和化学降解,因为风化层模拟物复合材料在热循环后会变得更硬、孔隙更多,并出现变黄现象。此外,我们指出在某些配方中,化学降解机制似乎与残余聚合相互竞争。我们将这种现象归因于在-30°C下打印时单体物种的部分结晶,导致初始固化过程中乙烯基键转化率较低。此处呈现的结果揭示了热应力、未固化聚合物性能和降解机制之间复杂的相互作用,这有助于指导未来满足月球基础设施需求的风化层复合材料的应用案例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea4/11348411/f26230db6c6e/em4c00158_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验