Suppr超能文献

用于低光子计数下相位恢复的具有相干调制成像(CMI)的相位提取神经网络(PhENN)。

Phase extraction neural network (PhENN) with coherent modulation imaging (CMI) for phase retrieval at low photon counts.

作者信息

Kang Iksung, Zhang Fucai, Barbastathis George

出版信息

Opt Express. 2020 Jul 20;28(15):21578-21600. doi: 10.1364/OE.397430.

Abstract

Imaging with low-dose light is of importance in various fields, especially when minimizing radiation-induced damage onto samples is desirable. The raw image captured at the detector plane is then predominantly a Poisson random process with Gaussian noise added due to the quantum nature of photo-electric conversion. Under such noisy conditions, highly ill-posed problems such as phase retrieval from raw intensity measurements become prone to strong artifacts in the reconstructions; a situation that deep neural networks (DNNs) have already been shown to be useful at improving. Here, we demonstrate that random phase modulation on the optical field, also known as coherent modulation imaging (CMI), in conjunction with the phase extraction neural network (PhENN) and a Gerchberg-Saxton-Fienup (GSF) approximant, further improves resilience to noise of the phase-from-intensity imaging problem. We offer design guidelines for implementing the CMI hardware with the proposed computational reconstruction scheme and quantify reconstruction improvement as function of photon count.

摘要

低剂量光成像在各个领域都很重要,特别是在需要将辐射对样品造成的损伤降至最低的情况下。在探测器平面捕获的原始图像主要是一个泊松随机过程,并由于光电转换的量子特性而叠加了高斯噪声。在这种噪声条件下,诸如从原始强度测量中进行相位恢复等高度不适定问题在重建中容易出现强烈的伪影;深度神经网络(DNN)已被证明在改善这种情况方面很有用。在这里,我们证明了光场上的随机相位调制,也称为相干调制成像(CMI),结合相位提取神经网络(PhENN)和格奇伯格 - 萨克斯顿 - 菲纽普(GSF)近似算法,进一步提高了强度相位成像问题对噪声的恢复能力。我们提供了使用所提出的计算重建方案实现CMI硬件的设计指南,并将重建改进量化为光子计数的函数。

相似文献

3
Low Photon Count Phase Retrieval Using Deep Learning.
Phys Rev Lett. 2018 Dec 14;121(24):243902. doi: 10.1103/PhysRevLett.121.243902.
5
Sparse ptychographical coherent diffractive imaging from noisy measurements.
J Opt Soc Am A Opt Image Sci Vis. 2013 Mar 1;30(3):367-79. doi: 10.1364/JOSAA.30.000367.
6
Coherent modulation imaging using a physics-driven neural network.
Opt Express. 2022 Sep 26;30(20):35647-35662. doi: 10.1364/OE.472083.
7
Phase retrieval with complexity guidance.
J Opt Soc Am A Opt Image Sci Vis. 2019 Feb 1;36(2):202-211. doi: 10.1364/JOSAA.36.000202.
8
Deep iterative reconstruction for phase retrieval.
Appl Opt. 2019 Jul 10;58(20):5422-5431. doi: 10.1364/AO.58.005422.
9
High-quality laser beam diagnostics using modified coherent phase modulation imaging.
Opt Express. 2018 Mar 5;26(5):6239-6248. doi: 10.1364/OE.26.006239.
10
Coherent laser phase retrieval in the presence of measurement imperfections and incoherent light.
Appl Opt. 2017 Sep 10;56(26):7341-7345. doi: 10.1364/AO.56.007341.

引用本文的文献

1
On the use of deep learning for phase recovery.
Light Sci Appl. 2024 Jan 1;13(1):4. doi: 10.1038/s41377-023-01340-x.
2
Poisson Phase Retrieval in Very Low-count Regimes.
IEEE Trans Comput Imaging. 2022;8:838-850. doi: 10.1109/tci.2022.3209936. Epub 2022 Oct 5.
4
Low-intensity illumination for lensless digital holographic microscopy with minimized sample interaction.
Biomed Opt Express. 2022 Oct 10;13(11):5667-5682. doi: 10.1364/BOE.464367. eCollection 2022 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验