Hansen Anders K
Appl Opt. 2017 Sep 10;56(26):7341-7345. doi: 10.1364/AO.56.007341.
Phase retrieval is a powerful numerical method that can be used to determine the wavefront of laser beams based only on intensity measurements, without the use of expensive, low-resolution specialized wavefront sensors such as Shack-Hartmann sensors. However, phase retrieval techniques generally suffer from poor convergence and fidelity when the input measurements contain electronic or optical noise and/or an incoherent intensity contribution overlapped with the otherwise spatially coherent laser beam. Here, we present an implementation of a modified version of the standard multiple-plane Gerchberg-Saxton algorithm and demonstrate that it is highly successful at extracting the intensity profile and wavefront of the spatially coherent part of the light from various lasers, including tapered laser diodes, at a very high fidelity despite the presence of incoherent light and noise.
相位恢复是一种强大的数值方法,它可仅基于强度测量来确定激光束的波前,而无需使用诸如夏克-哈特曼传感器等昂贵且低分辨率的专用波前传感器。然而,当输入测量包含电子或光学噪声和/或与原本空间相干的激光束重叠的非相干强度贡献时,相位恢复技术通常会出现收敛性差和保真度低的问题。在此,我们展示了标准多平面格尔奇贝格-萨克斯顿算法修改版本的一种实现方式,并证明尽管存在非相干光和噪声,但它在以非常高的保真度提取来自各种激光器(包括锥形激光二极管)的光的空间相干部分的强度分布和波前方面非常成功。