Suppr超能文献

一种基于度量投影器的神经网络用于求解二阶锥约束变分不等式问题。

A Neural Network Based on the Metric Projector for Solving SOCCVI Problem.

作者信息

Sun Juhe, Fu Weichen, Alcantara Jan Harold, Chen Jein-Shan

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2886-2900. doi: 10.1109/TNNLS.2020.3008661. Epub 2021 Jul 6.

Abstract

We propose an efficient neural network for solving the second-order cone constrained variational inequality (SOCCVI). The network is constructed using the Karush-Kuhn-Tucker (KKT) conditions of the variational inequality (VI), which is used to recast the SOCCVI as a system of equations by using a smoothing function for the metric projection mapping to deal with the complementarity condition. Aside from standard stability results, we explore second-order sufficient conditions to obtain exponential stability. Especially, we prove the nonsingularity of the Jacobian of the KKT system based on the second-order sufficient condition and constraint nondegeneracy. Finally, we present some numerical experiments, illustrating the efficiency of the neural network in solving SOCCVI problems. Our numerical simulations reveal that, in general, the new neural network is more dominant than all other neural networks in the SOCCVI literature in terms of stability and convergence rates of trajectories to SOCCVI solution.

摘要

我们提出了一种用于求解二阶锥约束变分不等式(SOCCVI)的高效神经网络。该网络是利用变分不等式(VI)的卡罗需-库恩-塔克(KKT)条件构建的,通过使用度量投影映射的平滑函数来处理互补条件,从而将SOCCVI重铸为一个方程组。除了标准的稳定性结果外,我们还探索了二阶充分条件以获得指数稳定性。特别是,我们基于二阶充分条件和约束非退化性证明了KKT系统雅可比矩阵的非奇异性。最后,我们给出了一些数值实验,说明了该神经网络在求解SOCCVI问题时的效率。我们的数值模拟表明,总体而言,在轨迹到SOCCVI解的稳定性和收敛速度方面,新神经网络比SOCCVI文献中的所有其他神经网络更具优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验