IEEE Trans Cybern. 2022 Sep;52(9):8781-8792. doi: 10.1109/TCYB.2021.3051261. Epub 2022 Aug 18.
Many scientific research and engineering problems can be converted to time-varying quadratic programming (TVQP) problems with constraints. Thus, TVQP problem solving plays an important role in practical applications. Many existing neural networks, such as the gradient neural network (GNN) or zeroing neural network (ZNN), were designed to solve TVQP problems, but the convergent rate is limited. The recent varying-parameter convergent-differential neural network (VP-CDNN) can accelerate the convergent rate, but it can only solve the equality-constrained problem. To remedy this deficiency, a novel barrier varying-parameter dynamic learning network (BVDLN) is proposed and designed, which can solve the equality-, inequality-, and bound-constrained problem. Specifically, the constrained TVQP problem is first converted into a matrix equation. Second, based on the modified Karush-Kuhn-Tucker (KKT) conditions and varying-parameter neural dynamic design method, the BVDLN model is conducted. The superiorities of the proposed BVDLN model can solve multiple-constrained TVQP problems, and the convergent rate can achieve superexponentially convergence. Comparative simulative experiments verify that the proposed BVDLN is more effective and more accurate. Finally, the proposed BVDLN is applied to solve a robot motion planning problems, which verifies the applicability of the proposed model.
许多科学研究和工程问题可以转化为具有约束条件的时变二次规划 (TVQP) 问题。因此,TVQP 问题的求解在实际应用中起着重要作用。许多现有的神经网络,如梯度神经网络 (GNN) 或零化神经网络 (ZNN),都是为了解决 TVQP 问题而设计的,但收敛速度有限。最近的变参数收敛微分神经网络 (VP-CDNN) 可以加速收敛速度,但它只能解决等式约束问题。为了弥补这一不足,提出并设计了一种新的障碍变参数动态学习网络 (BVDLN),可以解决等式约束、不等式约束和边界约束问题。具体来说,首先将约束 TVQP 问题转化为矩阵方程。其次,基于修正的 Karush-Kuhn-Tucker (KKT) 条件和变参数神经动态设计方法,进行 BVDLN 模型的设计。所提出的 BVDLN 模型的优势在于可以解决多种约束 TVQP 问题,并且收敛速度可以达到超指数收敛。比较模拟实验验证了所提出的 BVDLN 模型更加有效和准确。最后,将所提出的 BVDLN 应用于解决机器人运动规划问题,验证了所提出模型的适用性。