Suppr超能文献

利用牛奶 MIR 光谱对奶牛业进行大规模表型分析:影响预测质量的关键因素。

Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions.

机构信息

Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium.

TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

出版信息

Methods. 2021 Feb;186:97-111. doi: 10.1016/j.ymeth.2020.07.012. Epub 2020 Aug 4.

Abstract

Methods and technologies enabling the estimation at large scale of important traits for the dairy sector are of great interest. Those phenotypes are necessary to improve herd management, animal genetic evaluation, and milk quality control. In the recent years, the research was very active to predict new phenotypes from the mid-infrared (MIR) analysis of milk. Models were developed to predict phenotypes such as fine milk composition, milk technological properties or traits related to cow health, fertility and environmental impact. Most of models were developed within research contexts and often not designed for routine use. The implementation of models at a large scale to predict new traits of interest brings new challenges as the factors influencing the robustness of models are poorly documented. The first objective of this work is to highlight the impact on prediction accuracy of factors such as the variability of the spectral and reference data, the spectral regions used and the complexity of models. The second objective is to emphasize methods and indicators to evaluate the quality of models and the quality of predictions generated under routine conditions. The last objective is to outline the issues and the solutions linked with the use and transfer of models on large number of instruments. Based on partial least square regression and 10 datasets including milk MIR spectra and reference quantitative values for 57 traits of interest, the impact of the different factors is illustrated by evaluating the influence on the validation root mean square error of prediction (RMSEP). In the displayed examples, all factors, when well set up, increase the quality of predictions, with an improvement of the RMSEP ranging from 12% to 43%. This work also aims to underline the need for and the complementarity between different validation procedures, statistical parameters and quality assurance methods. Finally, when using and transferring models, the impact of the spectral standardization on the prediction reproducibility is highlighted with an improvement up to 86% with the tested models, and the monitoring of individual spectrometer stability over time appears essential. This list inspired from our experience is of course not exhaustive. The displayed results are only examples and not general rules and other aspects play a role in the quality of final predictions. However, this work highlights good practices, methods and indicators to increase and evaluate quality of phenotypes predicted at a large scale. The results obtained argue for the development of guidelines at international levels, as well as international collaborations in order to constitute large and robust datasets and enable the use of models in routine conditions.

摘要

方法和技术对于大规模估计奶制品行业的重要性状非常重要。这些表型对于改进牛群管理、动物遗传评估和牛奶质量控制是必要的。近年来,研究非常活跃,旨在通过牛奶中中红外(MIR)分析来预测新的表型。已经开发了模型来预测精细的牛奶成分、牛奶技术特性或与奶牛健康、繁殖力和环境影响相关的性状等表型。大多数模型都是在研究范围内开发的,而且通常不是为常规使用而设计的。将模型应用于大规模预测新的感兴趣性状带来了新的挑战,因为影响模型稳健性的因素记录很少。这项工作的第一个目标是强调影响预测准确性的因素,如光谱和参考数据的可变性、使用的光谱区域和模型的复杂性。第二个目标是强调评估模型质量和在常规条件下生成的预测质量的方法和指标。最后一个目标是概述与在大量仪器上使用和转移模型相关的问题和解决方案。基于偏最小二乘回归和 10 个数据集,其中包括牛奶 MIR 光谱和 57 个感兴趣性状的定量参考值,通过评估对验证均方根预测误差(RMSEP)的影响来说明不同因素的影响。在所显示的示例中,所有因素在设置得当的情况下都能提高预测质量,RMSEP 的改善范围从 12%到 43%不等。这项工作还旨在强调不同验证程序、统计参数和质量保证方法的必要性和互补性。最后,在使用和转移模型时,通过提高测试模型高达 86%的预测再现性,突出了光谱标准化对预测重现性的影响,并且随着时间的推移,对单个分光计稳定性的监测显得至关重要。这个从我们的经验中得到的列表当然不是详尽无遗的。显示的结果只是示例,而不是普遍规则,其他方面也会影响最终预测的质量。然而,这项工作强调了提高和评估大规模预测表型质量的良好实践、方法和指标。所获得的结果支持在国际层面制定指南以及国际合作的发展,以便建立大型和稳健的数据集,并使模型能够在常规条件下使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验