Suppr超能文献

牛奶中红外光谱仪的标准化,用于多模型的传递和使用。

Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models.

机构信息

Valorization of Agricultural Products Department, Walloon Agricultural Research Center, 5030 Gembloux, Belgium.

Agriculture, Bio-Engineering, and Chemistry Department, University of Liège, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium.

出版信息

J Dairy Sci. 2017 Oct;100(10):7910-7921. doi: 10.3168/jds.2017-12720. Epub 2017 Jul 26.

Abstract

An increasing number of models are being developed to provide information from milk Fourier transform mid-infrared (FT-MIR) spectra on fine milk composition, technological properties of milk, or even cows' physiological status. In this context, and to take advantage of these existing models, the purpose of this work was to evaluate whether a spectral standardization method can enable the use of multiple equations within a network of different FT-MIR spectrometers. The piecewise direct standardization method was used, matching "slave" instruments to a common reference, the "master." The effect of standardization on network reproducibility was assessed on 66 instruments from 3 different brands by comparing the spectral variability of the slaves and the master with and without standardization. With standardization, the global Mahalanobis distance from the slave spectra to the master spectra was reduced on average from 2,655.9 to 14.3, representing a significant reduction of noninformative spectral variability. The transfer of models from instrument to instrument was tested using 3 FT-MIR models predicting (1) the quantity of daily methane emitted by dairy cows, (2) the concentration of polyunsaturated fatty acids in milk, and (3) the fresh cheese yield. The differences, in terms of root mean squared error, between master predictions and slave predictions were reduced after standardization on average from 103 to 17 g/d, from 0.0315 to 0.0045 g/100 mL of milk, and from 2.55 to 0.49 g of curd/100 g of milk, respectively. For all the models, standard deviations of predictions among all the instruments were also reduced by 5.11 times for methane, 5.01 times for polyunsaturated fatty acids, and 7.05 times for fresh cheese yield, showing an improvement of prediction reproducibility within the network. Regarding the results obtained, spectral standardization allows the transfer and use of multiple models on all instruments as well as the improvement of spectral and prediction reproducibility within the network. The method makes the models universal, thereby offering opportunities for data exchange and the creation and use of common robust models at an international level to provide more information to the dairy sector from direct analysis of milk.

摘要

越来越多的模型被开发出来,以提供从牛奶傅里叶变换中红外(FT-MIR)光谱中获得的关于精细牛奶成分、牛奶技术特性甚至奶牛生理状态的信息。在这种情况下,为了利用这些现有的模型,本工作旨在评估光谱标准化方法是否可以使多个方程在不同 FT-MIR 光谱仪的网络中得到应用。使用分段直接标准化方法,将“从机”仪器与一个共同的参考“主机”匹配。通过比较标准化前后从机和主机的光谱可变性,评估了标准化对 66 台来自 3 个不同品牌的仪器的网络再现性的影响。通过标准化,从机光谱与主机光谱之间的全局马哈拉诺比斯距离从 2655.9 平均降低到 14.3,表明非信息性光谱可变性显著降低。通过使用 3 个 FT-MIR 模型(1)预测奶牛每天排放的甲烷量,(2)预测牛奶中多不饱和脂肪酸的浓度,(3)预测新鲜奶酪的产量,测试了从仪器到仪器的模型转移。标准化后,主预测和从机预测之间的均方根误差差异平均从 103 减少到 17 g/d,从 0.0315 减少到 0.0045 g/100 mL 牛奶,从 2.55 减少到 0.49 g 凝乳/100 g 牛奶。对于所有模型,标准化后所有仪器的预测标准差也分别降低了 5.11 倍(甲烷)、5.01 倍(多不饱和脂肪酸)和 7.05 倍(新鲜奶酪产量),表明网络内的预测再现性得到了提高。根据所获得的结果,光谱标准化允许在所有仪器上转移和使用多个模型,并提高网络内的光谱和预测再现性。该方法使模型具有通用性,从而为国际上的数据交换以及创建和使用通用稳健模型提供了机会,以便从牛奶的直接分析中为乳制品行业提供更多信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验