Dhason Raja, Roy Sandipan, Datta Shubhabrata
Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu-603203, India.
Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu-603203, India.
Comput Methods Programs Biomed. 2020 Nov;196:105680. doi: 10.1016/j.cmpb.2020.105680. Epub 2020 Jul 30.
Composite bone plates are proposed for fracture fixation in periprosthetic femoral fracture. Metallic plates, having high stiffness compared to bone lead to stress shielding, reduce the compression force in the fracture site, affectthe healing process. Reduction of stiffness in the axial direction due to above reason without lowering the stiffness in transverse to avoid much of shear strain and thus avoiding instability at the fracture site leads to selective stress shielding. This can only be achieved through meticulously designed fiber reinforced composite. In the present work varied fiber orientations in the stacked laminates with varied fiber types are employed in a post-operative femur fixation for the in-silico analyses of their effectiveness using finite element analysis.
In this study a Total Hip Arthroplasty (THA) model is constructed with composite bone plates. Three-dimensional narrow type metal plate is modeled with 12 holes and length of 194 mm. Three different types of composite bone plates are modeled with 12 holes of different size for the analysis i.e. Type 1 (5.6 mm thickness and 16 mm width), Type 2 (6 mm thickness and 16 mm width) and Type 3(6 mm thickness and 18 mm width). Anatomical 3D FE models of THA with composite bone plates are constructed to find out the interfacial stresses and strains. The finite element software ANSYS is used to perform the analysis.
A three-dimensional FE model of immediately post-operative femur fixation is developed and studied the maximum stress distribution, strain and movement in axial/shear direction in the metal and composite bone plate near to the fracture site. In the present study, the metal and composite plate (carbon/epoxy, glass/epoxy and flax/epoxy) used for most common Vancouver type B1 fracture to observe the biomechanical behavior of different models in IPO condition using FEA.
Optimizing the fiber orientations of composite bone plates of Total Hip Arthroplasty (THA) model by controlling the biomechanical stresses could be a favorable approach. The finite element analysis approach gives a viable solution to design the composite bone plate and for designing future models that preserves the biomechanical function of THA with composite bone plate.
复合骨板被提议用于假体周围股骨骨折的固定。金属板与骨相比具有较高的刚度,会导致应力遮挡,降低骨折部位的压缩力,影响愈合过程。由于上述原因,在不降低横向刚度的情况下降低轴向刚度,以避免过多的剪切应变,从而避免骨折部位的不稳定,这会导致选择性应力遮挡。这只能通过精心设计的纤维增强复合材料来实现。在本研究中,在术后股骨固定中采用了具有不同纤维类型的堆叠层压板中不同的纤维取向,使用有限元分析对其有效性进行计算机模拟分析。
在本研究中,构建了一个带有复合骨板的全髋关节置换(THA)模型。对一个带有12个孔、长度为194毫米的三维窄型金属板进行建模。为分析建模了三种不同类型的复合骨板,它们有不同尺寸的12个孔,即1型(厚度5.6毫米、宽度16毫米)、2型(厚度6毫米、宽度16毫米)和3型(厚度6毫米、宽度18毫米)。构建了带有复合骨板的THA的解剖学三维有限元模型,以找出界面应力和应变。使用有限元软件ANSYS进行分析。
建立了术后即刻股骨固定的三维有限元模型,并研究了骨折部位附近金属和复合骨板在轴向/剪切方向的最大应力分布、应变和位移。在本研究中,使用金属板和复合板(碳/环氧树脂板、玻璃/环氧树脂板和亚麻/环氧树脂板)来处理最常见的温哥华B1型骨折,通过有限元分析观察不同模型在术后即刻(IPO)状态下的生物力学行为。
通过控制生物力学应力来优化全髋关节置换(THA)模型复合骨板的纤维取向可能是一种有利的方法。有限元分析方法为设计复合骨板以及设计未来保留带有复合骨板THA生物力学功能的模型提供了可行的解决方案。