Suppr超能文献

用于有序回归的基于模型的随机森林

Model-based random forests for ordinal regression.

作者信息

Buri Muriel, Hothorn Torsten

机构信息

Institut für Epidemiologie, Biostatistik und Prävention, Universität Zürich, Zürich, Switzerland.

出版信息

Int J Biostat. 2020 Aug 7. doi: 10.1515/ijb-2019-0063.

Abstract

We study and compare several variants of random forests tailored to prognostic models for ordinal outcomes. Models of the conditional odds function are employed to understand the various random forest flavours. Existing random forest variants for ordinal outcomes, such as Ordinal Forests and Conditional Inference Forests, are evaluated in the presence of a non-proportional odds impact of prognostic variables. We propose two novel random forest variants in the model-based transformation forest family, only one of which explicitly assumes proportional odds. These two novel transformation forests differ in the specification of the split procedures for the underlying ordinal trees. One of these split criteria is able to detect changes in non-proportional odds situations and the other one focuses on finding proportional-odds signals. We empirically evaluate the performance of the existing and proposed methods using a simulation study and illustrate the practical aspects of the procedures by a re-analysis of the respiratory sub-item in functional rating scales of patients suffering from Amyotrophic Lateral Sclerosis (ALS).

摘要

我们研究并比较了几种针对有序结局预后模型定制的随机森林变体。使用条件优势函数模型来理解各种随机森林类型。在存在预后变量的非比例优势影响的情况下,对现有的用于有序结局的随机森林变体,如有序森林和条件推断森林进行了评估。我们在基于模型的变换森林家族中提出了两种新颖的随机森林变体,其中只有一种明确假设比例优势。这两种新颖的变换森林在底层有序树的分裂过程规范上有所不同。这些分裂标准之一能够检测非比例优势情况下的变化,另一个则专注于寻找比例优势信号。我们通过模拟研究对现有方法和所提出方法的性能进行了实证评估,并通过对肌萎缩侧索硬化症(ALS)患者功能评定量表中呼吸子项目的重新分析来说明这些程序的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验