Suppr超能文献

基于监督学习的全身炎症标志物助力pT1NxM0期结直肠癌的精准追加手术:两种淋巴结转移实用预测模型的比较分析

Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis.

作者信息

Jin Jinlian, Zhou Haiyan, Sun Shulin, Tian Zhe, Ren Haibing, Feng Jinwu

机构信息

Department of Gastroenterology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, 443002, People's Republic of China.

出版信息

Cancer Manag Res. 2021 Dec 1;13:8967-8977. doi: 10.2147/CMAR.S337516. eCollection 2021.

Abstract

PURPOSE

Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.

PATIENTS AND METHODS

We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.

RESULTS

Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.

CONCLUSION

Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.

摘要

目的

预测内镜切除术后的淋巴结转移(LNM)对于确定pT1NxM0期结直肠癌(CRC)患者是否应接受额外手术至关重要。本研究旨在开发一种预测模型,以降低当前过度治疗的可能性。

患者与方法

我们共招募了1194例连续的pT1NxM0期CRC患者,这些患者于2006年1月1日至2021年8月31日在国药葛洲坝中心医院接受了内镜或手术切除。分别使用随机森林分类器(RFC)和广义线性算法(GLM)筛选出对LNM预测有重大影响的变量。应用曲线下面积(AUC)和决策曲线分析(DCA)评估预测模型的准确性。

结果

分析确定了前10个候选因素,包括黏膜下浸润深度、中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、血小板与中性粒细胞比值(PNR)、静脉侵犯、低分化簇、肿瘤芽生、分级、淋巴管侵犯和背景腺瘤。GLM在训练队列中的AUC最高达到0.79(95%置信区间[CI]:0.30至1.28),在验证队列中的稳健AUC为0.80(95%置信区间[CI]:0.36至1.24)。同时,RFC在训练队列中的稳健AUC为0.84(95%置信区间[CI]:0.40至1.28),在验证队列中的AUC为0.85(95%CI:0.41至1.29)。DCA也表明RFC具有更好的预测能力。

结论

与GLM相比,我们基于监督学习的模型结合组织病理学参数和炎症标志物显示出更准确的预测性能。这种新的基于监督学习的预测模型可用于确定个体化的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f825/8645952/20a3624bc90c/CMAR-13-8967-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验