Suppr超能文献

生理过程中的氧化剂

Oxidants in Physiological Processes.

作者信息

Knaus Ulla G

机构信息

Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.

出版信息

Handb Exp Pharmacol. 2021;264:27-47. doi: 10.1007/164_2020_380.

Abstract

A number of diseases and conditions have been associated with prolonged or persistent exposure to non-physiological levels of reactive oxygen species (ROS). Similarly, ROS underproduction due to loss-of-function mutations in superoxide or hydrogen peroxide (HO)-generating enzymes is a risk factor or causative for certain diseases. However, ROS are required for basic cell functions; in particular the diffusible second messenger HO that serves as signaling molecule in redox processes. This activity sets HO apart from highly reactive oxygen radicals and influences the approach to drug discovery, clinical utility, and therapeutic intervention. Here we review the chemical and biological fundamentals of ROS with emphasis on HO as a signaling conduit and initiator of redox relays and propose an integrated view of physiological versus non-physiological reactive species. Therapeutic interventions that target persistently altered ROS levels should include both selective inhibition of a specific source of primary ROS and careful consideration of a targeted pro-oxidant approach, an avenue that is still underdeveloped. Both strategies require attention to redox dynamics in complex cellular systems, integration of the overall spatiotemporal cellular environment, and target validation to yield effective and safe therapeutics. The only professional primary ROS producers are NADPH oxidases (NOX1-5, DUOX1-2). Many other enzymes, e.g., xanthine oxidase (XO), monoamine oxidases (MAO), lysyl oxidases (LO), lipoxygenase (LOX), and cyclooxygenase (COX), produce superoxide and HO secondary to their primary metabolic function. Superoxide is too reactive to disseminate, but HO is diffusible, only limited by adjacent PRDXs or GPXs, and can be apically secreted and imported into cells through aquaporin (AQP) channels. HO redox signaling includes oxidation of the active site thiol in protein tyrosine phosphatases, which will inhibit their activity and thereby increase tyrosine phosphorylation on target proteins. Essential functions include the oxidative burst by NOX2 as antimicrobial innate immune response; gastrointestinal NOX1 and DUOX2 generating low HO concentrations sufficient to trigger antivirulence mechanisms; and thyroidal DUOX2 essential for providing HO reduced by TPO to oxidize iodide to an iodinating form which is then attached to tyrosyls in TG. Loss-of-function (LoF) variants in TPO or DUOX2 cause congenital hypothyroidism and LoF variants in the NOX2 complex chronic granulomatous disease.

摘要

许多疾病和病症都与长期或持续暴露于非生理水平的活性氧(ROS)有关。同样,由于超氧化物或过氧化氢(HO)生成酶的功能丧失突变导致的ROS产生不足是某些疾病的危险因素或病因。然而,ROS是基本细胞功能所必需的;特别是可扩散的第二信使HO,它在氧化还原过程中作为信号分子。这种活性使HO有别于高活性氧自由基,并影响药物发现、临床应用和治疗干预的方法。在这里,我们回顾ROS的化学和生物学基本原理,重点是HO作为氧化还原信号传导途径和氧化还原中继的启动者,并提出生理与非生理活性物质的综合观点。针对持续改变的ROS水平的治疗干预应包括选择性抑制主要ROS的特定来源,以及仔细考虑靶向促氧化剂方法,这一途径仍未得到充分发展。这两种策略都需要关注复杂细胞系统中的氧化还原动力学,整合整体时空细胞环境,并进行靶点验证,以产生有效且安全的治疗方法。唯一专业的主要ROS产生者是NADPH氧化酶(NOX1 - 5,DUOX1 - 2)。许多其他酶,如黄嘌呤氧化酶(XO)、单胺氧化酶(MAO)、赖氨酰氧化酶(LO)、脂氧合酶(LOX)和环氧化酶(COX),在其主要代谢功能的基础上产生超氧化物和HO。超氧化物反应性太强而无法扩散,但HO是可扩散的,仅受相邻的过氧化物还原酶(PRDXs)或谷胱甘肽过氧化物酶(GPXs)限制,并且可以通过水通道蛋白(AQP)通道顶端分泌并进入细胞。HO氧化还原信号传导包括蛋白质酪氨酸磷酸酶活性位点硫醇的氧化,这将抑制其活性,从而增加靶蛋白上的酪氨酸磷酸化。基本功能包括NOX2引发的氧化爆发作为抗菌先天性免疫反应;胃肠道中的NOX1和DUOX2产生低浓度的HO,足以触发抗毒力机制;以及甲状腺中的DUOX2对于提供被甲状腺过氧化物酶(TPO)还原的HO以将碘化物氧化为碘化形式至关重要,然后该碘化形式附着于甲状腺球蛋白(TG)中的酪氨酸上。TPO或DUOX2中的功能丧失(LoF)变体导致先天性甲状腺功能减退,而NOX2复合物中的LoF变体导致慢性肉芽肿病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验