School of Chemistry, University of New South Wales, Sydney, 2052, Australia.
Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Lyngby, Denmark.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21465-21469. doi: 10.1002/anie.202009435. Epub 2020 Sep 15.
Inspired by the metal-sulfur (M-S) linkages in the nitrogenase enzyme, here we show a surface modification strategy to modulate the electronic structure and improve the N availability on a catalytic surface, which suppresses the hydrogen evolution reaction (HER) and improves the rate of NH production. Ruthenium nanocrystals anchored on reduced graphene oxide (Ru/rGO) are modified with different aliphatic thiols to achieve M-S linkages. A high faradaic efficiency (11 %) with an improved NH yield (50 μg h mg ) is achieved at -0.1 V vs. RHE in acidic conditions by using dodecanethiol. DFT calculations reveal intermediate N adsorption and desorption of the product is achieved by electronic structure modification along with the suppression of the HER by surface modification. The modified catalyst shows excellent stability and recyclability for NH production, as confirmed by rigorous control experiments including N isotope labeling experiments.
受氮酶中金属-硫 (M-S) 键的启发,我们展示了一种表面修饰策略,以调节催化表面的电子结构并提高氮的可用性,从而抑制析氢反应 (HER) 并提高 NH3 生成速率。负载在还原氧化石墨烯 (Ru/rGO) 上的钌纳米晶体用不同的脂肪族硫醇进行修饰,以实现 M-S 键合。在酸性条件下,通过使用十二硫醇,在相对于 RHE 为 -0.1 V 的电位下,可获得 11%的高法拉第效率 (FE) 和 50 μg h-1 mg-1 的改进的 NH3 产率。密度泛函理论 (DFT) 计算表明,通过电子结构修饰以及通过表面修饰抑制 HER,可以实现中间产物 N 的吸附和解吸。通过严格的对照实验,包括 N 同位素标记实验,证实了修饰后的催化剂在 NH3 生产中具有出色的稳定性和可循环性。