Suppr超能文献

在双金属氧化物纳米球中引入氧空位以促进电催化氮还原。

Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction.

作者信息

Li Heen, Xu Xiaoyue, Lin Xiaohu, Chen Jianmin, Zhu Kunling, Peng Fei, Gao Faming

机构信息

Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.

Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China.

出版信息

Nanoscale. 2023 Feb 23;15(8):4071-4079. doi: 10.1039/d2nr06195c.

Abstract

The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO by pyrolysis at 450 °C (450-NiMnO) to achieve remarkable NRR activity. The NiMnO 3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO, 450-NiMnO showed excellent performance for nitrogen reduction to ammonia with a high NH yield of 31.44 μg h mg (at -0.3 V RHE) and a splendid FE of 14.5% (at -0.1 V RHE) in 0.1 M KOH. 450-NiMnO also shows high long-term electrochemical stability with excellent selectivity for NH formation. N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.

摘要

N-N三键的缓慢断裂以及竞争性析氢反应(HER)的存在,限制了氮还原反应过程。修饰催化剂表面以促进氮的吸附和活化对于固氮至关重要。在此,我们通过在450℃热解(450-NiMnO)在双金属氧化物NiMnO中引入表面氧空位,以实现显著的NRR活性。具有粗糙表面的NiMnO三维纳米球可以增加催化活性金属位点并引入能够增强氮吸附并进一步提高反应速率的氧空位。受益于NiMnO中引入的氧空位,450-NiMnO在0.1 M KOH中表现出优异的氮还原制氨性能,NH产率高达31.44 μg h mg(在-0.3 V vs. RHE),FE高达14.5%(在-0.1 V vs. RHE)。450-NiMnO还表现出高的长期电化学稳定性以及对氨生成的优异选择性。氮同位素标记实验进一步证实了生成氨的来源是450-NiMnO。本研究为合理构建用于从氮合成氨的高效电催化剂开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验