Suppr超能文献

原子尺度相分离诱导溶质原子簇聚。

Atomic-scale phase separation induced clustering of solute atoms.

作者信息

Zou Lianfeng, Cao Penghui, Lei Yinkai, Zakharov Dmitri, Sun Xianhu, House Stephen D, Luo Langli, Li Jonathan, Yang Yang, Yin Qiyue, Chen Xiaobo, Li Chaoran, Qin Hailang, Stach Eric A, Yang Judith C, Wang Guofeng, Zhou Guangwen

机构信息

Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA.

Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA.

出版信息

Nat Commun. 2020 Aug 7;11(1):3934. doi: 10.1038/s41467-020-17826-w.

Abstract

Dealloying typically occurs via the chemical dissolution of an alloy component through a corrosion process. In contrast, here we report an atomic-scale nonchemical dealloying process that results in the clustering of solute atoms. We show that the disparity in the adatom-substrate exchange barriers separate Cu adatoms from a Cu-Au mixture, leaving behind a fluid phase enriched with Au adatoms that subsequently aggregate into supported clusters. Using dynamic, atomic-scale electron microscopy observations and theoretical modeling, we delineate the atomic-scale mechanisms associated with the nucleation, rotation and amorphization-crystallization oscillations of the Au clusters. We expect broader applicability of the results because the phase separation process is dictated by the inherent asymmetric adatom-substrate exchange barriers for separating dissimilar atoms in multicomponent materials.

摘要

脱合金化通常通过腐蚀过程中合金成分的化学溶解而发生。相比之下,我们在此报告一种原子尺度的非化学脱合金化过程,该过程导致溶质原子聚集。我们表明,吸附原子与衬底之间交换势垒的差异将铜吸附原子从铜 - 金混合物中分离出来,留下富含金吸附原子的流体相,这些吸附原子随后聚集成支撑簇。通过动态原子尺度电子显微镜观察和理论建模,我们描绘了与金簇的成核、旋转以及非晶化 - 结晶振荡相关的原子尺度机制。我们预计这些结果具有更广泛的适用性,因为相分离过程由多组分材料中分离不同原子时固有的不对称吸附原子 - 衬底交换势垒所决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/7415157/1e935bc0488b/41467_2020_17826_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验