Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain.
Sci Rep. 2020 Aug 7;10(1):13424. doi: 10.1038/s41598-020-70431-1.
The remarkable ability of tardigrades to withstand a wide range of physical and chemical extremes has attracted a considerable interest in these small invertebrates, with a particular focus on the protective roles of proteins expressed during such conditions. The discovery that a tardigrade-unique protein named Dsup (damage suppressor) protects DNA from damage produced by radiation and radicals, has raised expectations concerning its potential applications in biotechnology and medicine. We present in this paper what might be dubbed a "computational experiment" on the Dsup-DNA system. By means of molecular modelling, calculations of electrostatic potentials and electric fields, and all-atom molecular dynamics simulations, we obtained a dynamic picture of the Dsup-DNA interaction. Our results suggest that the protein is intrinsically disordered, which enables Dsup to adjust its structure to fit DNA shape. Strong electrostatic attractions and high protein flexibility drive the formation of a molecular aggregate in which Dsup shields DNA. While the precise mechanism of DNA protection conferred by Dsup remains to be elucidated, our study provides some molecular clues of their association that could be of interest for further investigation in this line.
缓步动物能够耐受广泛的物理和化学极端条件的非凡能力引起了人们对这些小型无脊椎动物的极大兴趣,特别是对这些条件下表达的蛋白质的保护作用。发现一种名为 Dsup(损伤抑制因子)的缓步动物特有的蛋白质可以保护 DNA 免受辐射和自由基产生的损伤,这使得人们对其在生物技术和医学中的潜在应用寄予厚望。本文介绍了一种对 Dsup-DNA 系统的所谓“计算实验”。通过分子建模、静电势和电场的计算以及全原子分子动力学模拟,我们获得了 Dsup-DNA 相互作用的动态图像。我们的结果表明,该蛋白质本质上是无规卷曲的,这使得 Dsup 能够调整其结构以适应 DNA 的形状。强烈的静电吸引力和高蛋白质的灵活性促使 Dsup 形成一个分子聚集体,其中 Dsup 可以保护 DNA。虽然 Dsup 赋予 DNA 保护的确切机制仍有待阐明,但我们的研究提供了它们结合的一些分子线索,这可能对进一步研究这一领域具有重要意义。