Otero-de-la-Roza A, Johnson Erin R
Departamento de Química Física y Analítica and MALTA Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.
Department of Chemistry, Dalhousie University, 6274 Coburg Rd., Halifax, Nova Scotia B3H 4R2, Canada.
J Chem Phys. 2020 Aug 7;153(5):054121. doi: 10.1063/5.0015133.
Dispersion corrections are essential in the description of intermolecular interactions; however, dispersion-corrected functionals must also be transferrable to hard solids. The exchange-hole dipole moment (XDM) model has demonstrated excellent performance for non-covalent interactions. In this article, we examine its ability to describe the relative stability, geometry, and compressibility of simple ionic solids. For the specific cases of the cesium halides, XDM-corrected functionals correctly predict the energy ranking of the B1 and B2 forms, and a dispersion contribution is required to obtain this result. Furthermore, for the lattice constants of the 20 alkali halides, the performance of XDM-corrected functionals is excellent, provided that the base functional's exchange enhancement factor properly captures non-bonded repulsion. The mean absolute errors in lattice constants obtained with B86bPBE-XDM and B86bPBE-25X-XDM are 0.060 Å and 0.039 Å, respectively, suggesting that delocalization error also plays a minor role in these systems. Finally, we considered the calculation of bulk moduli for alkali halides and alkaline-earth oxides. Previous claims in the literature that simple generalized gradient approximations, such as PBE, can reliably predict experimental bulk moduli have benefited from large error cancellations between neglecting both dispersion and vibrational effects. If vibrational effects are taken into account, dispersion-corrected functionals are quite accurate (4 GPa-5 GPa average error), again, if non-bonded repulsion is correctly represented. Careful comparisons of the calculated bulk moduli with experimental data are needed to avoid systematic biases and misleading conclusions.
色散校正对于描述分子间相互作用至关重要;然而,经过色散校正的泛函还必须能够适用于硬质固体。交换空穴偶极矩(XDM)模型在描述非共价相互作用方面表现出色。在本文中,我们研究了其描述简单离子固体的相对稳定性、几何结构和可压缩性的能力。对于卤化铯的具体情况,经XDM校正的泛函正确地预测了B1和B2结构的能量排序,并且需要色散贡献才能得到此结果。此外,对于20种碱金属卤化物的晶格常数,只要基础泛函的交换增强因子能恰当地捕捉非键排斥作用,经XDM校正的泛函的性能就非常出色。使用B86bPBE - XDM和B86bPBE - 25X - XDM得到的晶格常数的平均绝对误差分别为0.060 Å和0.039 Å,这表明离域误差在这些体系中也起较小作用。最后,我们考虑了碱金属卤化物和碱土金属氧化物的体模量计算。文献中先前的说法称,诸如PBE之类的简单广义梯度近似能够可靠地预测实验体模量,这得益于忽略色散和振动效应时的大误差抵消。如果考虑振动效应,那么经色散校正的泛函相当准确(平均误差为4 GPa - 5 GPa),同样前提是正确表示非键排斥作用。需要将计算得到的体模量与实验数据进行仔细比较,以避免系统偏差和误导性结论。