Otero-de-la-Roza A, Johnson Erin R
National Institute for Nanotechnology, National Research Council of Canada , 11421 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2M9.
Department of Chemistry, Dalhousie University , 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2.
J Chem Theory Comput. 2015 Sep 8;11(9):4033-40. doi: 10.1021/acs.jctc.5b00044. Epub 2015 Aug 5.
In this article, we examine the ability of the exchange-hole dipole moment (XDM) model of dispersion to treat large supramolecular systems. We benchmark several XDM-corrected functionals on the S12L set proposed by Grimme, which comprises large dispersion-bound host-guest systems, for which back-corrected experimental and Quantum Monte Carlo (QMC) reference data are available. PBE-XDM coupled with the relatively economical and efficient pc-2-spd basis set gives excellent statistics (mean absolute error (MAE) = 1.5 kcal/mol), below the deviation between experimental and QMC data. When compared only to the (more accurate) QMC results, PBE-XDM/pc-2-spd (MAE = 1.2 kcal/mol) outperforms all other dispersion-corrected DFT results in the literature, including PBE-dDsC/QZ4P (6.2 kcal/mol), PBE-NL/def2-QZVP (4.7 kcal/mol), PBE-D2/def2-QZVP' (3.5 kcal/mol), PBE-D3/def2-QZVP'(2.3 kcal/mol), M06-L/def2-QZVP (1.9 kcal/mol), and PBE-MBD (1.8 kcal/mol), with no significant bias (mean error (ME) = 0.04 kcal/mol). PBE-XDM/pc-2-spd gives binding energies relatively close to the complete basis-set limit and does not necessitate the use of counterpoise corrections, which facilitates its use. The dipole-quadrupole and quadrupole-quadrupole pairwise dispersion terms (C8 and C10) are critical for the correct description of the dimers. XDM-corrected functionals different from PBE that work well for small dimers do not yield good accuracy for the large supramolecular systems in the S12L, presenting errors that scale linearly with the dispersion contribution to the binding energy.
在本文中,我们研究了色散的交换空穴偶极矩(XDM)模型处理大型超分子体系的能力。我们在Grimme提出的S12L数据集上对几种XDM校正泛函进行了基准测试,该数据集包含大型色散束缚的主客体体系,可获得经反向校正的实验数据和量子蒙特卡罗(QMC)参考数据。PBE-XDM与相对经济高效的pc-2-spd基组相结合,给出了出色的统计结果(平均绝对误差(MAE)=1.5 kcal/mol),低于实验数据与QMC数据之间的偏差。仅与(更精确的)QMC结果相比时,PBE-XDM/pc-2-spd(MAE = 1.2 kcal/mol)优于文献中所有其他色散校正DFT结果,包括PBE-dDsC/QZ4P(6.2 kcal/mol)、PBE-NL/def2-QZVP(4.7 kcal/mol)、PBE-D2/def2-QZVP'(3.5 kcal/mol)、PBE-D3/def2-QZVP'(2.3 kcal/mol)、M06-L/def2-QZVP(1.9 kcal/mol)和PBE-MBD(1.8 kcal/mol),且无明显偏差(平均误差(ME)= 0.04 kcal/mol)。PBE-XDM/pc-2-spd给出的结合能相对接近完全基组极限,且无需使用抗衡校正,这便于其应用。偶极-四极和四极-四极成对色散项(C8和C10)对于二聚体的正确描述至关重要。与PBE不同的、对小二聚体效果良好的XDM校正泛函,对于S12L中的大型超分子体系无法给出良好的精度,其误差与结合能中的色散贡献呈线性关系。