Suppr超能文献

一种用于存在不可评估结果的诊断性研究荟萃分析的扩展三变量藤蔓相依混合模型。

An extended trivariate vine copula mixed model for meta-analysis of diagnostic studies in the presence of non-evaluable outcomes.

作者信息

Nikoloulopoulos Aristidis K

机构信息

School of Computing Sciences, University of East Anglia, NorwichNR4 7TJ,UK.

出版信息

Int J Biostat. 2020 Aug 10. doi: 10.1515/ijb-2019-0107.

Abstract

A recent paper proposed an extended trivariate generalized linear mixed model (TGLMM) for synthesis of diagnostic test accuracy studies in the presence of non-evaluable index test results. Inspired by the aforementioned model we propose an extended trivariate vine copula mixed model that includes the TGLMM as special case, but can also operate on the original scale of sensitivity, specificity, and disease prevalence. The performance of the proposed vine copula mixed model is examined by extensive simulation studies in comparison with the TGLMM. Simulation studies showed that the TGLMM leads to biased meta-analytic estimates of sensitivity, specificity, and prevalence when the univariate random effects are misspecified. The vine copula mixed model gives nearly unbiased estimates of test accuracy indices and disease prevalence. Our general methodology is illustrated by meta-analysing coronary CT angiography studies.

摘要

最近的一篇论文提出了一种扩展的三变量广义线性混合模型(TGLMM),用于在存在不可评估指标测试结果的情况下综合诊断测试准确性研究。受上述模型的启发,我们提出了一种扩展的三变量藤Copula混合模型,该模型将TGLMM作为特殊情况包含在内,但也可以在灵敏度、特异性和疾病患病率的原始尺度上运行。通过广泛的模拟研究,将所提出的藤Copula混合模型的性能与TGLMM进行了比较。模拟研究表明,当单变量随机效应指定错误时,TGLMM会导致对灵敏度、特异性和患病率的元分析估计产生偏差。藤Copula混合模型给出了几乎无偏差的测试准确性指标和疾病患病率估计。通过对冠状动脉CT血管造影研究进行元分析,说明了我们的一般方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验