Ma Xiaoye, Suri Muhammad Fareed K, Chu Haitao
Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St, SE, 55455 Minneapolis, MN, USA.
BMC Med Res Methodol. 2014 Dec 4;14:128. doi: 10.1186/1471-2288-14-128.
A recent paper proposed an intent-to-diagnose approach to handle non-evaluable index test results and discussed several alternative approaches, with an application to the meta-analysis of coronary CT angiography diagnostic accuracy studies. However, no simulation studies have been conducted to test the performance of the methods.
We propose an extended trivariate generalized linear mixed model (TGLMM) to handle non-evaluable index test results. The performance of the intent-to-diagnose approach, the alternative approaches and the extended TGLMM approach is examined by extensive simulation studies. The meta-analysis of coronary CT angiography diagnostic accuracy studies is re-evaluated by the extended TGLMM.
Simulation studies showed that the intent-to-diagnose approach under-estimate sensitivity and specificity. Under the missing at random (MAR) assumption, the TGLMM gives nearly unbiased estimates of test accuracy indices and disease prevalence. After applying the TGLMM approach to re-evaluate the coronary CT angiography meta-analysis, overall median sensitivity is 0.98 (0.967, 0.993), specificity is 0.875 (0.827, 0.923) and disease prevalence is 0.478 (0.379, 0.577).
Under MAR assumption, the intent-to-diagnose approach under-estimate both sensitivity and specificity, while the extended TGLMM gives nearly unbiased estimates of sensitivity, specificity and prevalence. We recommend the extended TGLMM to handle non-evaluable index test subjects.
最近一篇论文提出了一种意向性诊断方法来处理不可评估的指标测试结果,并讨论了几种替代方法,并将其应用于冠状动脉CT血管造影诊断准确性研究的荟萃分析。然而,尚未进行模拟研究来测试这些方法的性能。
我们提出了一种扩展的三变量广义线性混合模型(TGLMM)来处理不可评估的指标测试结果。通过广泛的模拟研究来检验意向性诊断方法、替代方法和扩展TGLMM方法的性能。使用扩展TGLMM对冠状动脉CT血管造影诊断准确性研究的荟萃分析进行重新评估。
模拟研究表明,意向性诊断方法低估了敏感性和特异性。在随机缺失(MAR)假设下,TGLMM对测试准确性指标和疾病患病率给出了几乎无偏的估计。在应用TGLMM方法重新评估冠状动脉CT血管造影荟萃分析后,总体中位敏感性为0.98(0.967,0.993),特异性为0.875(0.827,0.923),疾病患病率为0.478(0.379,0.577)。
在MAR假设下,意向性诊断方法低估了敏感性和特异性,而扩展TGLMM对敏感性、特异性和患病率给出了几乎无偏的估计。我们建议使用扩展TGLMM来处理不可评估的指标测试对象。