Suppr超能文献

人工智能在结直肠肿瘤检测和特征分析中的应用。

Application of Artificial Intelligence in the Detection and Characterization of Colorectal Neoplasm.

机构信息

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea.

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea.

出版信息

Gut Liver. 2021 May 15;15(3):346-353. doi: 10.5009/gnl20186.

Abstract

Endoscpists always have tried to pursue a perfect colonoscopy, and application of artificial intelligence (AI) using deep-learning algorithms is one of the promising supportive options for detection and characterization of colorectal polyps during colonoscopy. Many retrospective studies conducted with real-time application of AI using convolutional neural networks have shown improved colorectal polyp detection. Moreover, a recent randomized clinical trial reported additional polyp detection with shorter analysis time. Studies conducted regarding polyp characterization provided additional promising results. Application of AI with narrow band imaging in real-time prediction of the pathology of diminutive polyps resulted in high diagnostic accuracy. In addition, application of AI with endocytoscopy or confocal laser endomicroscopy was investigated for realtime cellular diagnosis, and the diagnostic accuracy of some studies was comparable to that of pathologists. With AI technology, we can expect a higher polyp detection rate with reduced time and cost by avoiding unnecessary procedures, resulting in enhanced colonoscopy efficiency. However, for AI application in actual daily clinical practice, more prospective studies with minimized selection bias, consensus on standardized utilization, and regulatory approval are needed.

摘要

内镜医生一直致力于追求完美的结肠镜检查,而使用深度学习算法的人工智能(AI)应用是在结肠镜检查期间检测和特征化结直肠息肉的一种很有前途的辅助选择。许多使用卷积神经网络实时应用 AI 的回顾性研究表明,结直肠息肉的检测得到了改善。此外,最近的一项随机临床试验报告称,分析时间更短可额外检测到息肉。关于息肉特征的研究提供了更多有希望的结果。实时窄带成像 AI 应用可对微小息肉的病理进行预测,其诊断准确性较高。此外,应用内镜下黏膜切除术或共聚焦激光显微内镜实时细胞诊断的 AI 技术也得到了研究,一些研究的诊断准确性可与病理学家相媲美。随着 AI 技术的发展,我们可以通过避免不必要的程序来提高息肉检测率,降低时间和成本,从而提高结肠镜检查的效率。但是,要将 AI 应用于实际的日常临床实践,还需要更多前瞻性研究,以最小化选择偏倚、达成标准化使用共识,并获得监管部门的批准。

相似文献

本文引用的文献

6
Artificial Intelligence and Polyp Detection.人工智能与息肉检测
Curr Treat Options Gastroenterol. 2020 Jan 21;18(1):120-136. doi: 10.1007/s11938-020-00274-2. Print 2020 Mar.
7
Application of artificial intelligence in gastroenterology.人工智能在胃肠病学中的应用。
World J Gastroenterol. 2019 Apr 14;25(14):1666-1683. doi: 10.3748/wjg.v25.i14.1666.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验