Yoon Hong Jin, Kim Jie-Hyun
Division of Gastroenterology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea.
Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Clin Endosc. 2020 Mar;53(2):127-131. doi: 10.5946/ce.2020.046. Epub 2020 Mar 30.
Diagnosis and evaluation of early gastric cancer (EGC) using endoscopic images is significantly important; however, it has some limitations. In several studies, the application of convolutional neural network (CNN) greatly enhanced the effectiveness of endoscopy. To maximize clinical usefulness, it is important to determine the optimal method of applying CNN for each organ and disease. Lesion�-based CNN is a type of deep learning model designed to learn the entire lesion from endoscopic images. This review describes the application of lesion-based CNN technology in diagnosis of EGC.
利用内镜图像诊断和评估早期胃癌(EGC)具有极其重要的意义;然而,它也存在一些局限性。在多项研究中,卷积神经网络(CNN)的应用极大地提高了内镜检查的有效性。为了最大限度地发挥临床实用性,确定针对每个器官和疾病应用CNN的最佳方法非常重要。基于病变的CNN是一种深度学习模型,旨在从内镜图像中学习整个病变。这篇综述描述了基于病变的CNN技术在早期胃癌诊断中的应用。
BMC Gastroenterol. 2022-5-12
Scand J Gastroenterol. 2023-2
Diagnostics (Basel). 2024-11-30
Front Bioinform. 2023-7-26
World J Gastroenterol. 2021-6-28
Technol Cancer Res Treat. 2021
Front Mol Biosci. 2020-8-26
Gastrointest Endosc. 2018-8-16
Gastroenterology. 2018-6-18