Suppr超能文献

基于人工智能的精神分裂症分类:一项高密度脑电图与支持向量机研究。

Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study.

作者信息

Tikka Sai Krishna, Singh Bikesh Kumar, Nizamie S Haque, Garg Shobit, Mandal Sunandan, Thakur Kavita, Singh Lokesh Kumar

机构信息

Department of Psychiatry, All India Institute of Medical Sciences , Raipur, Chhattisgarh, India.

Department of Bio-Medical Engineering, National Institute of Technology , Raipur, Chhattisgarh, India.

出版信息

Indian J Psychiatry. 2020 May-Jun;62(3):273-282. doi: 10.4103/psychiatry.IndianJPsychiatry_91_20. Epub 2020 May 15.

Abstract

BACKGROUND

Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues.

AIMS

To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording.

SETTINGS AND DESIGN

Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute.

MATERIALS AND METHODS

Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification.

STATISTICAL ANALYSIS

Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications.

RESULTS

Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances.

CONCLUSIONS

SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.

摘要

背景

基于访谈的精神分裂症(SCZ)诊断方法并不完全有效。此外,SCZ这种疾病实体具有很强的异质性。人工智能的监督式机器学习(sML)应用在解决这些问题方面有着巨大的前景。

目的

利用高密度记录,通过基于sML的静息态脑电图(EEG)定量特征在区分健康人群与SCZ患者以及SCZ阳性症状(PS)和阴性症状(NS)亚组方面的判别效度。

设置与设计

在一家三级护理心理健康机构采用横断面研究设计收集数据,并在一所一流工程学院进行分析。

材料与方法

检索了38例SCZ患者和20例健康对照的数据。使用阳性和阴性症状量表操作标准进行阳性 - 阴性亚组分类。使用256通道高密度设备记录EEG。选择了八个感兴趣区域。采用六级小波分解和核支持向量机(SVM)方法进行特征提取和数据分类。

统计分析

使用曼 - 惠特尼检验比较机器学习特征。测量准确度、灵敏度、特异性和受试者操作特征曲线下面积作为分类的判别指标。

结果

从健康人群中区分SCZ以及从NS SCZ中区分PS的准确度分别为78.95%和89.29%。虽然β和γ频率相关特征最准确地将SCZ与健康对照区分开来,但δ和θ频率相关特征最准确地将阳性SCZ与阴性SCZ区分开来。额下回特征对这两种分类情况的贡献最为准确。

结论

基于SVM使用EEG数据对SCZ进行分类和亚分类是最优的,可能有助于提高SCZ诊断的“效度”并减少其“异质性”。这些结果可能仅适用于急性和中度患病的男性SCZ患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da0a/7368447/ef93c27ab63c/IJPsy-62-273-g001.jpg

相似文献

1
Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study.
Indian J Psychiatry. 2020 May-Jun;62(3):273-282. doi: 10.4103/psychiatry.IndianJPsychiatry_91_20. Epub 2020 May 15.
2
Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults.
Neuropsychiatr Electrophysiol. 2016;2:3. doi: 10.1186/s40810-016-0017-0. Epub 2016 Feb 11.
3
A hybrid decision support system for automatic detection of Schizophrenia using EEG signals.
Comput Biol Med. 2022 Feb;141:105028. doi: 10.1016/j.compbiomed.2021.105028. Epub 2021 Nov 17.
5
The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood.
Neurosci Lett. 2021 Feb 6;745:135596. doi: 10.1016/j.neulet.2020.135596. Epub 2020 Dec 24.
6
A machine learning approach using auditory odd-ball responses to investigate the effect of Clozapine therapy.
Clin Neurophysiol. 2015 Apr;126(4):721-30. doi: 10.1016/j.clinph.2014.07.017. Epub 2014 Aug 27.
7
Transcriptomics and machine learning to advance schizophrenia genetics: A case-control study using post-mortem brain data.
Comput Methods Programs Biomed. 2022 Feb;214:106590. doi: 10.1016/j.cmpb.2021.106590. Epub 2021 Dec 16.
8
Prediction of violence in male schizophrenia using sMRI, based on machine learning algorithms.
BMC Psychiatry. 2022 Nov 1;22(1):676. doi: 10.1186/s12888-022-04331-1.

引用本文的文献

1
Translational significance of neurodevelopment underpinned 'neurophysiological-cognitive' biomarkers in schizophrenia.
Indian J Psychiatry. 2025 May;67(5):482-486. doi: 10.4103/indianjpsychiatry.indianjpsychiatry_310_25. Epub 2025 May 15.
2
Multi-modal EEG NEO-FFI with Trained Attention Layer (MENTAL) for mental disorder prediction.
Brain Inform. 2024 Oct 22;11(1):26. doi: 10.1186/s40708-024-00240-z.
3
4
Assisting schizophrenia diagnosis using clinical electroencephalography and interpretable graph neural networks: a real-world and cross-site study.
Neuropsychopharmacology. 2023 Dec;48(13):1920-1930. doi: 10.1038/s41386-023-01658-5. Epub 2023 Jul 25.
5
Diagnosis of Schizophrenia Based on the Data of Various Modalities: Biomarkers and Machine Learning Techniques (Review).
Sovrem Tekhnologii Med. 2022;14(5):53-75. doi: 10.17691/stm2022.14.5.06. Epub 2022 Sep 29.
6
7
Machine Learning and Non-Affective Psychosis: Identification, Differential Diagnosis, and Treatment.
Curr Psychiatry Rep. 2022 Dec;24(12):925-936. doi: 10.1007/s11920-022-01399-0. Epub 2022 Nov 18.
9
Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects.
J Clin Med. 2022 Aug 27;11(17):5040. doi: 10.3390/jcm11175040.
10
Artificial intelligence and Psychiatry: An overview.
Asian J Psychiatr. 2022 Apr;70:103021. doi: 10.1016/j.ajp.2022.103021. Epub 2022 Feb 12.

本文引用的文献

1
An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration.
Lancet Neurol. 2019 Dec;18(12):1112-1122. doi: 10.1016/S1474-4422(19)30321-7. Epub 2019 Oct 3.
2
Machine learning in psychiatry- standards and guidelines.
Asian J Psychiatr. 2019 Aug;44:A1-A4. doi: 10.1016/j.ajp.2019.09.009. Epub 2019 Sep 10.
3
Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype.
Schizophr Res. 2019 Dec;214:70-75. doi: 10.1016/j.schres.2019.08.032. Epub 2019 Sep 6.
4
Deep neural networks in psychiatry.
Mol Psychiatry. 2019 Nov;24(11):1583-1598. doi: 10.1038/s41380-019-0365-9. Epub 2019 Feb 15.
5
EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies.
Front Hum Neurosci. 2019 Jan 9;12:521. doi: 10.3389/fnhum.2018.00521. eCollection 2018.
6
Patterns of schizophrenia symptoms: hidden structure in the PANSS questionnaire.
Transl Psychiatry. 2018 Oct 30;8(1):237. doi: 10.1038/s41398-018-0294-4.
8
Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging.
Front Neurosci. 2018 Aug 6;12:525. doi: 10.3389/fnins.2018.00525. eCollection 2018.
9
Will Machine Learning Enable Us to Finally Cut the Gordian Knot of Schizophrenia.
Schizophr Bull. 2018 Aug 20;44(5):939-941. doi: 10.1093/schbul/sby101.
10
Alterations in resting-state gamma activity in patients with schizophrenia: a high-density EEG study.
Eur Arch Psychiatry Clin Neurosci. 2019 Jun;269(4):429-437. doi: 10.1007/s00406-018-0889-z. Epub 2018 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验